簡易檢索 / 詳目顯示

研究生: 蔡政勳
Cheng-Hsun Tsai
論文名稱: 一個八位元每秒十二億五千萬次取樣之次階-連續漸進式類比至數位轉換器設計與實現
Design and Implementation of an 8-bit 1.25-GS/s Subranged-SAR ADC
指導教授: 鍾勇輝
Yung-Hui Chung
口試委員: 范振麟
none
曾偉信
none
陳亮仁
none
陳筱青
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 71
中文關鍵詞: 類比至數位轉換器連續漸進式共模電壓抬高
外文關鍵詞: Analog-to-Digital Converters(ADC), SAR, common-mode boosting
相關次數: 點閱:384下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文是介紹一個如何在CMOS 65奈米製程下,實現一個八位元每秒十二億五千萬次取樣的類比至數位轉換器,其是採用次階-連續漸進式為架構;供應電壓為1.2伏特,輸入信號的全範圍為1.2伏特。當輸入頻率為六百兆赫時,信號對雜訊與失真比(SNDR)為46dB,無雜散信號動態範圍(SFDR)為59dB,整體的消耗功率為19.2毫瓦。
    能夠達到高速的操作是藉由以下幾點來實現,也是本論文的重點,第一是我們的粗略類比至數位轉換器採用了轉換時間最短的快閃式架構,第二個是我們的精確類比至數位轉換器採用兩個通道的連續漸進式架構,藉由時間交錯的方式來使得轉換時間得以緩解,第三則是我們在電容數位至類比轉換器的部分採用了單調式切換搭配共模電壓抬高的切換方式,使得比較器的輸入電壓在較高的準位,進而降低轉換的時間延遲。
    由於快閃式架構是由比較器為主體所組成的電路,為了要達到一定的精確度,比較器的消耗功率勢必相當可觀,且要產生給比較器使用的參考電壓的電阻串,其靜態消耗功率也會造成整體電路消耗功率的提高,為了解決這兩個問題,我們採用了內建參考電壓的比較器,且使用栓鎖器插值法降低比較器的數量。而我們在精確類比至數位轉換器使用兩通道,而兩通道則會引入時間歪斜的問題,我們採用了主取樣的技術降低時間歪斜造成的錯誤。

    粗略類比至數位轉換器所採用的內建參考電壓的比較器以及兩通道之間的精確類比至數位轉換器的比較器皆採用前景校正的方式來確保因不匹配所造成的抵補電壓。


    This thesis introduces how to design and implement an 8-bits 1.25-GS/s analog-to-digital converter (ADC) in the 65nm CMOS process. In this work, the Subranged-SAR architecture is used. The supply voltage is 1.2V. When the input frequency is 600MHz, the Signal to Noise and Distortion Ratio (SNDR) is 46 dB, and the Spur-Free Dynamic Range (SFDR) is 59 dB, the power consumption is 19.2 mW.

    The high speed operation can be achieved is by following, also the thesis focus, (1) the coarse ADC (CADC) uses the most fast architecture is the flash architecture, (2) the fine ADC (FADC) uses two channel Successive-Approximation (SAR) ADC with the time-interleaved architecture to alleviate the conversion time, (3) in our FADC, the main DAC (MDAC) uses the set-and-down switching with common-mode boosting to make the input voltage of comparator (CMP) can be risen to higher level, and then cut down the conversion delay time.
    Because the flash architecture is composed by CMPs, in order to achieve the accuracy requirement, the CMP’s power consumption will be considerable. To generate a reference voltage of the CMP, a resistor string is applied. Its static power consumption also increases the total power consumption. To solve these two power issues, I choose the CMP with a built-in reference voltage. Moreover, I use the latch interpolation to decrease the CMP amount by half. The FADC uses two ADC channels to save time. It will introduce a timing-skew problem. In this work, the master sampling technique was applied to reduce the errors caused by the timing skew.

    The built-in reference voltage of CMPs is calibrated in the foreground to make sure the offset voltages are compensated.

    摘要 i Abstract iii Contents v 誌謝 vii List of Figures viii List of Tables x Chapter 1 - 1 - 1.1 Motivation - 1 - 1.2 Organization - 2 - Chapter 2 - 3 - 2.1 Flash ADC - 3 - 2.2 Successive-Approximation ADC - 6 - 2.3 Subranging ADC - 8 - 2.4 Time-Interleaved ADC - 11 - 2.5 Architecture Summary - 12 - Chapter 3 - 13 - 3.1 Architecture - 13 - 3.2 Master Sampling - 17 - 3.3 Common-Mode Boosting Switching - 19 - Chapter 4 - 22 - 4.1 Track and Hold Circuit Design - 22 - 4.2 Coarse ADC Design - 26 - 4.2.1 Comparator Analysis - 26 - 4.2.2 Built-in Offset Compensation - 30 - 4.2.3 Latch Interpolation Implement - 32 - 4.2.4 Dynamic Flag Generator - 33 - 4.3 Fine ADC Design - 37 - 4.3.1 Comparator Analysis - 37 - 4.3.2 MDAC Analysis - 40 - 4.3.3 Dynamic Register Controller - 42 - Chapter 5 - 45 - 5.1 Pre-layout Simulation - 45 - 5.2 Layout and Bonding Wire Consideration - 47 - 5.3 Post-layout Simulation - 49 - Chapter 6 - 51 - 6.1 Conclusion - 51 - 6.2 Future Work - 52 - References - 54 -

    [1] M. Choi and A. A. Abidi, “A 6-b 1.3-Gsample/s A/D Converter in 0.35-μm CMOS,” IEEE J. Solid State Circuits, Vol. 36, No. 12, pp. 1847–1858, Dec. 2001.
    [2] Y.-Z. Lin, Y.-T. Liu, and S.-J. Chang, “A 5-bit 4.2-GS/s flash ADC in 0.13-μm CMOS,” in Proc. IEEE Custom Integrated Circuits Conference, Sep.2007, pp. 213–216.
    [3] R. Poujois and J. Borel, “A low drift fully integrated MOSFET operational amplifier,” IEEE J. Solid-State Circuits, Vol. SC-13, No. 4, pp. 499–503, Aug. 1978.
    [4] S. Tsukamoto, W. G. Schofield, and T. Endo, “A CMOS 6-b, 400-MSample/s ADC with Error Correction,” IEEE J. Solid-State Circuits, Vol. 33, No. 12, pp. 1939–1947, Dec. 1998.
    [5] C.-C. Huang and J.-T. Wu,“A Background Comparator Calibration Technique for Flash Analog-to-Digital Converters,” IEEE Trans. Circuits Syst. I, Vol. 52, No. 9, pp. 1732–1740, Sep. 2005.
    [6] Y.-H. Chung and J.-T. Wu “A CMOS 6-mW 10-bit 100-MS/s Two-Step ADC,” IEEE J. Solid-State Circuits, Vol. 45. No. 11, pp. 2217-2226, Nov. 2010.
    [7] B. Verbruggen, J. Craninckx, M. Kuijk, P. Wambacq, and G. V. der Plas. “A 2.2mW 5b 1.75GS/s Folding Flash ADC in 90nm Digital CMOS,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb. 2008, pp. 252–253.
    [8] R. C. Taft, C. A. Menkus, M. R. Tursi, O. Hidri, and V. Pons “A 1.8-V 1.6-GSample/s 8-b Self-Calibrating Folding ADC With 7.26 ENOB at Nyquist Frequency,” IEEE J. Solid State Circuits, Vol. 39, No. 12, pp. 2107–2115, Dec. 2004.
    [9] M. Miyahara, I. Mano, M. Nakayama, K. Okada, and A. Matsuzawa, “A 2.2GS/s 7b 27.4mW Time-Based Folding-Flash ADC with Resistively Averaged Voltage-to-Time Amplifiers,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb. 2014, pp. 388–389.
    [10] K. Kusumoto, A. Matsuzawa, and K. Murata, “A 10-b 20-MHz 30-mW Pipelined Interpolating CMOS ADC,” IEEE J. Solid-State Circuits, Vol. 28, No. 12, pp. 1200–1206, Dec. 1993.
    [11] J.-I. Kim, D.-R. Oh, D.-S. Jo, B.-R.-S. Sung, and S.-T. Ryu, “A 65 nm CMOS 7b 2 GS/s 20.7 mW Flash ADC With Cascaded Latch Interpolation,” IEEE J. Solid State Circuits, Vol. 50, No. 10, pp. 2319–2330, Oct. 2015.
    [12] S. Hashemi and B. Razavi, “A 7.1 mW 1 GS/s ADC With 48 dB SNDR at Nyquist Rate,” IEEE J. Solid State Circuits, Vol. 49, No. 8, pp. 1739–1750, Aug. 2014.
    [13] S.-W. M. Chen and R. W. Brodersen, “A 6-bit 600-MS/s 5.3-mW Asynchronous ADC in 0.13-μm CMOS,” IEEE J. Solid State Circuits, Vol. 41, No. 12, pp. 2669–2680, Dec. 2006.
    [14] Z. Cao, S. Yan and Y. Li, “A 32mW 1.25GS/s 6b 2b/step SAR ADC in 0.13μm CMOS,” IEEE J. Solid State Circuits, Vol. 44, No. 3, pp. 862–873, Dec. 2009.
    [15] C.-H. Chan, Y. Zhu, S.-W. Sin, S.-P. U and R. P. Martins, “A 6 b 5 GS/s 4 Interleaved 3 b/Cycle SAR ADC,” IEEE J. Solid State Circuits, Vol. 51, No. 2, pp. 365–377, Feb. 2016.
    [16] F. Kuttner, “A 1.2V 10b 20MSample/s Non-Binary Successive Approximation ADC in 0.13μm CMOS,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb. 2002, pp. 176–177.
    [17] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Hunag, L. Bu and C.-C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with Binary-Scaled Error Compensation,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb. 2010, pp. 386–387.
    [18] L. Kull, et.al., “A 3.1 mW 8b 1.2 GS/s Single-Channel Asynchronous SAR ADC With Alternate Comparators for Enhanced Speed in 32 nm Digital SOI CMOS,” IEEE J. Solid State Circuits, Vol. 48, No. 12, pp. 3049–3058, Dec. 2013.
    [19] A. G. F. Dingwall and V. Zazzu, “An 8-MHz CMOS Subranging 8-Bit A/D Converter,” IEEE J. Solid State Circuits, Vol. 20, No. 6, pp. 1138–1143, Dec. 1985.
    [20] K. Ohhata, K. Uchino, Y. Shimizu, K. Oyama and K. Yamashita, “Design of a 770-MHz, 70-mW, 8-bit Subranging ADC Using Reference Voltage Precharging Architecture,” IEEE J. Solid State Circuits, Vol. 44, No. 11, pp. 2881–2890, Nov. 2009.
    [21] K. Ohhata, H. Takase, M. Tateno, M. Arita, N. Imakake and Y. Yonemitsu, “A 1-GHz, 17.5-mW, 8-bit Subranging ADC Using Offset-Cancelling Charge-Steering Amplifier,” in Proc. IEEE Asian Solid-State Circuits Conference, Nov. 2012, pp. 149-152
    [22] Y.-H. Chung and J.-T. Wu, “A 16-mW 8-Bit 1-GS/s Digital-Subranging ADC in 55-nm CMOS,” IEEE Trans. VLSI Syst., Vol. 23, No. 3, pp. 557–566, Mar. 2016.
    [23] Y.-C. Lien “A 4.5-mW 8-b 750-MS/s 2-b/Step Asynchronous Subranged SAR ADC in 28-nm CMOS Technology,” in Symposium on VLSI Circuits Digest of Technical Papers, Jun. 2012, pp. 88-89
    [24] Y.-Z. Lin and et.al.,“A 9-Bit 150-MS/s Subrange ADC Based on SAR Architecture in 90-nm CMOS,” IEEE Trans. Circuits Syst. I, Vol. 60, No. 3, pp. 570–581, Mar. 2013.
    [25] W. C. Black and D. A. Hodges, “Time Interleaved Converter Arrays,” IEEE J. Solid State Circuits, Vol. 15, No. 6, pp. 1022–1029, Dec. 1980.
    [26] B. Razavi, “Problem of Timing Mismatch in Interleaved ADCs,” in Proc. IEEE Custom Integrated Circuits Conference, Sep.2012.
    [27] Y. C. Lim, and et.al, “Time-Interleaved Analog to Digital Converter Compensati-
    on Using Multichannel Filters,” IEEE Trans. Circuits Syst. I, Vol. 56, No. 10, pp. 2234–2247, Oct. 2009.
    [28] S. Lee, A. P. Chandrakasan and H.-S. Lee, “A 1 GS/s 10b 18.9 mW Time-Interleaved SAR ADC With Background Timing Skew Calibration,” IEEE J. Solid State Circuits, Vol. 49, No. 12, pp. 2846–2856, Dec. 2014.
    [29] V. H.-C. Chen and L. Pileggi, “A 69.5 mW 20 GS/s 6b Time-Interleaved ADC With Embedded Time-to-Digital Calibration in 32 nm CMOS SOI,” IEEE J. Solid State Circuits, Vol. 49, No. 12, pp. 2891–2901, Dec. 2014.
    [30] S. Kundu, and et.al, “A 1.2 V 2.64 GS/s 8 bit 39 mW Skew-Tolerant Time-interleaved SAR ADC in 40 nm Digital LP CMOS for 60 GHz WLAN,” IEEE Trans. Circuits Syst. I, Vol. 62, No. 8, pp. 1929–1939, Aug. 2015.
    [31] C.-C. Liu, S.-J. Chang, G.-Y. Huang and Y.-Z. Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure,” IEEE J. Solid State Circuits, Vol. 45, No. 4, pp. 731–740, Apr. 2010.
    [32] G.-Y. Huang, S.-J. Change, C.-C. Liu and Y.-Z. Lin, “10-bit 30-MS/s SAR ADC Using a Switchback Switching Method,” IEEE Trans. VLSI Syst., Vol. 21, No. 3, pp. 584–588, Mar. 2013.
    [33] M. Dessouky and A. Kaiser, “Input switch configuration suitable for rail-to-rail operation of switched op amp circuits,” IEE Electronics Letters, Vol. 35, pp. 8-10, Jun.1999
    [34] Y.-S. Shu, “A 6b 3GS/s 11mW Fully Dynamic Flash ADC in 40nm CMOS with Reduced Number of Comparators,” in Symposium on VLSI Circuits Digest of Technical Papers, Jun. 2012, pp. 26-27
    [35] G.-Y. Huang, S.-J. Chang, Y.-Z. Lin, C.-C. Liu and C.-P. Huang, “A 10b 200MS/s 0.82mW SAR ADC in 40nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conference, Nov. 2013, pp. 289-292
    [36] C.-H. Chan, Y. Zhu, S.-W. S, S.-P. U, and R. P. Martins, “A 3.8mW 8b 1GS/s 2b/cycle Interleaving SAR ADC with Compact DAC Structure,” in Symposium on VLSI Circuits Digest of Technical Papers, Jun. 2012, pp. 86-87
    [37] H. Huang, L. Du, and Y. Chiu, “A 1.2-GS/s 8-bit Two-Step SAR ADC in 65-nm CMOS with Passive Residue Transfer,” in Proc. IEEE Asian Solid-State Circuits Conference, Nov. 2015, pp. 1-4
    [38] B. Verbruggen, M. Iriguchi, and J. Craninckx, “A 1.7mW 11b 250MS/s 2× Interleaved Fully Dynamic Pipelined SAR ADC in 40nm Digital CMOS,” in IEEE International Solid-State Circuits Conference Digest of Technical Papers, Feb. 2012, pp. 466–467.

    QR CODE