簡易檢索 / 詳目顯示

研究生: 許峻嘉
Jun-Jia Xu
論文名稱: 三氧化二釤奈米粒子的合成與表徵
Synthesis and Characterization of Samarium Oxide Nanoparticles
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 廖英志
Ying-Chih Liao
氏原真樹
Masaki Ujihara
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 59
中文關鍵詞: 三氧化二釤奈米粒子
外文關鍵詞: Samarium Oxide, Nanoparticles
相關次數: 點閱:202下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在這個題目裡,我們的目的是把三氧化二釤運用在標靶放射性治療中, 因此, 三氧化二釤粒子需要具備以下的條件: 奈米級粒子、球形、在水裡有良好的分散性。 這裡, 我們用了四種不同的方法包括水解法、水熱法、溶膠法和多元醇法來合成不同大小和型態的三氧化二釤奈米粒子。
在水解法中,三氧化二釤奈米球被成功地合成出來。此外,我們固定Sm(NO3)3·6H2O 莫耳濃度(0.05M)然後調整不同莫耳濃度的尿素(0.6M ~2.0M)。
當尿素的莫耳濃度是1.4M時,可以獲得最小的平均粒徑和最單一的粒徑分布。
在水熱法中,由於在高溫度(200 °C)以及長的反應時間下,三氧化二釤棒被合成出來。雖然粒子的大小和型態不適用於我們的目的但是三氧化二釤棒可以被應用在不同的領域,例如: 高介電係數材料、催化劑和傳感器。
在溶膠法中,二甘醇(diethylene glycol, DEG)和乙二醇(ethylene glycol, EG)被選擇當作溶劑。除此之外,整個反應是在鹼性環境下進行。在二甘醇環境下合成的三氧化二釤有較小的粒徑(19.50± 3.52 nm)。
在多醇法中,不同的溶液被分開地被加入至前驅物溶液中,第一個是氫氧化鈉溶液(溶於二甘醇)而另一個是純水。在氫氧化鈉溶液這例子,最佳的反應時間是兩小時因為可以獲得透明的溶液。而另一個純水的例子,最佳的水/二甘醇的比例是0.2因為能得到透明的溶液。最後兩個反應後的產物可以穩定地分散在溶液裡達數個禮拜之久。


In this work, the synthesis of samarium oxide (Sm2O3) applicable in targeted radionuclide treatment is our purpose. Therefore, Sm2O3 particles must possess following conditions; nanometer-size, spherical shape and good dispersion in water. Here, Sm2O3 particles of different particle sizes and morphologies were synthesized by four kinds of different methods including hydrolysis method, hydrothermal method, sol-gel method and polyol method.
In hydrolysis method, Sm2O3 nanospheres were successfully synthesized. Moreover, we fixed molar concentration (0.05 M) of Sm(NO3)3·6H2O and adjusted at different urea molar concentrations (0.6 M ~ 2.0 M). When urea concentration was 1.4 M, the smallest average particle size and narrow size distribution were obtained.
In hydrothermal method, Sm2O3 rods were formed due to high temperature (200 °C) and long reaction time. Although the particle size and morphology are not suitable for our purpose, Sm2O3 rods can be applied in different area such as high-k dielectric material, catalysts, and sensors.
In sol-gel method, ethylene glycol (EG) and diethylene glycol (DEG) were chosen as solvent. Besides, the reaction was carried out in an alkaline condition. Sm2O3 with the smaller particle size (19.5± 3.5 nm) was synthesized in DEG.
In polyol method, the reaction was carried out by adding separately different solutions into precursor solution (in DEG). One is sodium hydroxide (NaOH) solution (in DEG) and the other is only water. In case of addition of NaOH solution, the optimal time was 2 h because the transparent solution was obtained. In case of addition of water, the optimal ratio of water and DEG was 0.2 due to the gain of transparent solution. Finally, products from both reaction solutions can stably disperse in water for weeks.

CHAPTER 1-Introduction and Motivation 1.1 Introduction 1.1.1 Background 1.1.2 Radiation therapy 1.1.3 Radionuclide 1.1.4 Samarium(Sm) 1.2 Motivation and objective of work CHAPTER 2-Experimental section 2.1 Research design 2.2 Materials and Reagents 2.3 Experimental procedure 2.3.1 Synthesis of samarium oxide nanoparticles(I) by hydrolysis method (1) and silica-coated Sm2O3 nanoparticles(II) 2.3.2 Synthesis of samarium oxide rods by hydrothermal method (2) 2.3.3 Synthesis of samarium oxide nanoparticles by sol-gel method (3) 2.3.4 Synthesis of samarium oxide nanoparticles by polyol method (4a, 4b) 2.4 Instrument CHAPTER 3-Results and Discussion 3.1 Synthesis of samarium oxide nanoparticles (Sm2O3) by hydrolysis method and silica-coated Sm2O3 nanoparticles (Sm2O3@silica) 3.1.1 Characterization of samarium oxide nanoparticles 3.1.2 Morphology of samarium oxide by SEM and TEM 3.1.3 Characteristics of samarium oxide before and after calcination by XRD 3.1.4 Characterization of silica-coated samarium oxide nanoparticles 3.1.5 Characteristics of samarium oxide and silica-coated samarium oxide by XRD 3.1.5 Morphology of silica-coated samarium oxide by TEM 3.1.6 Characteristics of samarium oxide and silica-coated samarium oxide by FTIR 3.2 Synthesis of samarium oxide particles (Sm2O3) by hydrothermal method 3.2.1 Characterization of samarium oxide particles 3.2.2 Characteristics of samarium oxide before and after calcination by XRD 3.2.3 Morphology of samarium oxide by TEM 3.3 Synthesis of samarium oxide nanoparticles (Sm2O3) by sol-gel method 3.3.1 Characterization of samarium oxide nanoparticles 3.3.2 Characteristics of samarium oxide synthesized in ethylene glycol before and after calcination by XRD 3.2.3 Characteristics of samarium oxide synthesized in diethylene glycol before and after calcination by XRD 3.3.4 Morphology of samarium oxide synthesized in ethylene glycol by TEM 3.3.5 Morphology of samarium oxide synthesized in diethylene glycol by TEM 3.4 Synthesis of samarium oxide nanoparticles (Sm2O3) by polyol method 3.4.1 Characterization of samarium oxide nanoparticles 3.4.2 Characteristics of samarium oxide (method 4a, 4b) by XRD 3.4.3 Morphology of samarium oxide by HRTEM (method 4a) 3.4.4 Morphology of samarium oxide by HRTEM (method 4b) 3.4.5 Characteristics of samarium oxide by FTIR 3.5 Comparison of advantages and disadvantages of preparation methods of Sm2O3. CHAPTER 4-Conclusions and Future development 4.1 Conclusions 4.2 Future development List of Reference

1. Morris MJ, Scher HI. Clinical approaches to osseous metastases in prostate cancer. Oncologist 2003;8:161–73.
2. Smith Jr JA, Soloway MS, Young MJ. Complications of advanced prostate cancer. Urology 1999;54:8–14.
3. Pecher C. Biological investigation with radioactive calcium and strontium: preliminary report on the use of radioactive strontium in the treatment of metastatic bone cancer. UnivCalifPublPharmacol 1942;2:117–49.
4. Kolesnikov-Gauthier H, Carpentier P, Depreux P, Vennin P, Caty A, Sulman C. Evaluation of toxicity and efficacy of 186Re-hydroxyethylidene diphosphonate in patients with painful bone metastases of prostate or breast cancer. J Nucl Med 2000;41:1689–94.
5. Sciuto R, Festa A, Pasqualoni R, Semprebene A, Rea S, Bergomi S, et al. Metastatic bone pain palliation with 89-Sr and 186-Re-HEDP in breast cancer patients. Breast Cancer Res Treat 2001;66:101–9.
6. Liepe K, Kropp J, Runge R, Kotzerke J. Therapeutic effi- ciency of rhenium-188-HEDP in human prostate cancer skeletal metastases. Br J Cancer 2003;89:625–9.
7. Oosterhof GO, Roberts JT, de Reijke TM, Engelholm SA, Horenblas S, von der Maase H, et al. Strontium(89) chloride versus palliative local field radiotherapy in patients with hormonal escaped prostate cancer: a phase III study of the European Organisation for Research and Treatment of Cancer Genitourinary Group. EurUrol 2003;44:519–26.
8. Dafermou A, Colamussi P, Giganti M, Cittanti C, Bestagno M, Piffanelli A. A multicentre observational study of radionuclide therapy in patients with painful bone metastases of prostate cancer. Eur J Nucl Med 2001;28:788–98.
9. Kraeber-Bodere F, Campion L, Rousseau C, Bourdin S, Chatal JF, Resche I. Treatment of bone metastases of prostate cancer with strontium-89 chloride: efficacy in relation to the degree of bone involvement. Eur J Nucl Med 2000;27:1487–93.
10. Windsor PM. Predictors of response to strontium-89 (Metastron) in skeletal metastases from prostate cancer: report of a single centre’s 10-year experience. ClinOncol (R CollRadiol) 2001;13:219–27. eau-ebu update series 5 (2007) 113–125 121.
11. Liepe K, Runge R, Kotzerke J. The benefit of bone-seeking radiopharmaceuticals in the treatment of metastatic bone pain. J Cancer Res ClinOncol 2005;131:60–6.
12. Han SH, de Klerk JM, Tan S, het Schip AD, Derksen BH, van Dijk A, et al. The PLACORHEN study: a double-blind, placebo-controlled, randomized radionuclide study with (186)Re-etidronate in hormone-resistant prostate cancer patients with painful bone metastases. Placebo Controlled Rhenium Study. J Nucl Med 2002;43:1150–6.
13. Liepe K, Franke WG, Kropp J, Koch R, Runge R, Hliscs R. Comparison of rhenium-188, rhenium-186-HEDP and strontium-89 in palliation of painful bone metastases. Nuklearmedizin 2000;39:146–51.
14. Falkmer, U., Järhult, J., Wersäll, P., & Cavallin-Ståhl, E. A systematic overview of radiation therapy effects in skeletal metastases. ActaOncologica2003;42(5-6), 620-633.
15. Xiao, H., Li, P., Jia, F., & Zhang, L. General nonaqueous sol− gel synthesis of nanostructured Sm2O3, Gd2O3, Dy2O3, and Gd2O3: Eu3+ phosphor. The Journal of Physical Chemistry C 2009;113(50), 21034-21041.
16. Muneer, I., Farrukh, M. A., Javaid, S., Shahid, M., &Khaleeq-ur-Rahman, M. Synthesis of Gd2O3/Sm2O3nanocomposite via sonication and hydrothermal methods and its optical properties. Superlattices and Microstructures 2015;77, 256-266.
17. Ghosh, P., Kundu, S., Kar, A., Ramanujachary, K. V., Lofland, S., &Patra, A. Synthesis and characterization of different shaped Sm2O3nanocrystals. Journal of Physics D: Applied Physics 2010;43(40), 405401.
18. Mohammadinasab, R., Tabatabaee, M., Aghaie, H., &SeyedSadjadi, M. A. A simple method for synthesis of nanocrystalline Sm2O3 powder by thermal decomposition of samarium nitrate. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 2015;45(3), 451-454.
19. Liu, T., Zhang, Y., Shao, H., & Li, X. Synthesis and characteristics of Sm2O3 and Nd2O3 nanoparticles. Langmuir2003;19(18), 7569-7572.
20. Ascencio, J. A., Rincon, A. C., &Canizal, G. Synthesis and theoretical analysis of samarium nanoparticles: perspectives in nuclear medicine. The Journal of Physical Chemistry B 2005;109(18), 8806-8812..
21. Hashikin, N. A. A., Yeong, C. H., Abdullah, B. J. J., Ng, K. H., Chung, L. Y., Dahalan, R., & Perkins, A. C. Neutron Activated Samarium-153 Microparticles for TransarterialRadioembolization of Liver Tumour with Post-Procedure Imaging Capabilities. PloS one 2015;10(9), e0138106.
22. Nejad, S. J., &Golzary, A. Experimental design for the optimization of hydrothermal synthesis of samarium oxide (Sm2O3) nanoparticles under supercritical water condition. International Journal of Chemical Engineering and Applications 2011;2(4), 243.
23. Kang, J. G., Min, B. K., &Sohn, Y. Synthesis and characterization of Sm(OH) and SmO nanoroll sticks. Journal of materials science 2015;50(4).
24. Nguyen, T. D., Mrabet, D., & Do, T. O. Controlled self-assembly of Sm2O3 nanoparticles into nanorods: simple and large scale synthesis using bulk Sm2O3 powders. The Journal of Physical Chemistry C 2008;112(39), 15226-15235.
25. Matijević, E., & Hsu, W. P. Preparation and properties of monodispersed colloidal particles of lanthanide compounds: I. Gadolinium, europium, terbium, samarium, and cerium (III). Journal of Colloid and Interface Science 1987;118(2), 506-523.
26. Gaspar, R. D. L., Mazali, I. O., &Sigoli, F. A. Particle size tailoring and luminescence of europium (III)-doped gadolinium oxide obtained by the modified homogeneous precipitation method: Dielectric constant and counter anion effects. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010;367(1), 155-160.
27. Kulkarni, S. S., &Shirsat, M. D. Optical and structural properties of zinc oxide nanoparticles. 2015
28. Bridot, J. L., Faure, A. C., Laurent, S., Rivière, C., Billotey, C., Hiba, B., ...& Muller, R. Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. Journal of the American Chemical Society 2007;129(16), 5076-5084.
29. PetoralJr, R. M., Soderlind, F., Klasson, A., Suska, A., Fortin, M. A., Abrikossova, N., ... &Uvdal, K. Synthesis and characterization of Tb3+-doped Gd2O3 nanocrystals: a bifunctional material with combined fluorescent labeling and MRI contrast agent properties. The Journal of Physical Chemistry C 2009;113(17), 6913-6920.
30. Gao, J., Zhao, Y., Yang, W., Tian, J., Guan, F., Ma, Y., ...& Wang, Y. Preparation of samarium oxide nanoparticles and its catalytic activity on the esterification. Materials chemistry and physics2003;77(1), 65-69.
31. Cheng, M. Y., Hwang, D. H., Sheu, H. S., & Hwang, B. J. Formation of Ce0.8 Sm0.2O1.9 nanoparticles by urea-based low-temperature hydrothermal process. Journal of Power Sources 2008;175(1), 137-144.
32. Kobayashi, Y., Katakami, H., Mine, E., Nagao, D., Konno, M., & Liz-Marzán, L. M. Silica coating of silver nanoparticles using a modified Stöber method. Journal of colloid and interface science 2005;283(2), 392-396.
33. Mine, E., Yamada, A., Kobayashi, Y., Konno, M., & Liz-Marzán, L. M. Direct coating of gold nanoparticles with silica by a seeded polymerization technique. Journal of colloid and interface science 2003;264(2), 385-390.
34. Alias, S. S., Ismail, A. B., &Mohamad, A. A. Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation. Journal of Alloys and Compounds 2010;499(2), 231-237.
35. Bazzi, R., Flores, M. A., Louis, C., Lebbou, K., Zhang, W., Dujardin, C., ...&Perriat, P. Synthesis and properties of europium-based phosphors on the nanometer scale: Eu2O3, Gd2O3: Eu, and Y2O3: Eu. Journal of colloid and interface science 2004;273(1), 191-197.
36. Yang, J., Li, C., Quan, Z., Kong, D., Zhang, X., Yang, P., & Lin, J. One-step aqueous solvothermal synthesis of In2O3 nanocrystals. Crystal Growth and Design 2007;8(2), 695-699.
37. Caruntu, D., Remond, Y., Chou, N. H., Jun, M. J., Caruntu, G., He, J., ... & Kolesnichenko, V. Reactivity of 3d transition metal cations in diethylene glycol solutions. Synthesis of transition metal ferrites with the structure of discrete nanoparticles complexed with long-chain carboxylate anions. Inorganic chemistry 2002;41(23), 6137-6146.
38. Mutelet, B., Perriat, P., Ledoux, G., Amans, D., Lux, F., Tillement, O., ... & Roux, S. Suppression of luminescence quenching at the nanometer scale in Gd2O3 doped with Eu3+ or Tb3+: Systematic comparison between nanometric and macroscopic samples of life-time, quantum yield, radiative and non-radiative decay rates. Journal of Applied Physics 2011;110(9), 094317.
39. Flores-Gonzalez, M. A., Ledoux, G., Roux, S., Lebbou, K., Perriat, P., &Tillement, O. Preparing nanometer scaled Tb-doped Y2O3 luminescent powders by the polyol method. Journal of Solid State Chemistry 2005;178(4), 989-997.
40. Bazzi, R., Brenier, A., Perriat, P., &Tillement, O. Optical properties of neodymium oxides at the nanometer scale. Journal of luminescence 2005;113(1), 161-167.
41. Bazzi, R., Flores-Gonzalez, M. A., Louis, C., Lebbou, K., Dujardin, C., Brenier, A., ...&Perriat, P. Synthesis and luminescent properties of sub-5-nm lanthanide oxides nanoparticles. Journal of Luminescence 2003;102, 445-450.
42. Lebbou, K., Perriat, P., &Tillement, O. Recent progress on elaboration of undoped and doped Y2O3, Gd2O3 rare-earth nano-oxide. Journal of nanoscience and nanotechnology 2005;5(9), 1448-1454.
43. Azizian, G., Riyahi-Alam, N., Haghgoo, S., Moghimi, H. R., Zohdiaghdam, R., Rafiei, B., &Gorji, E. Synthesis route and three different core-shell impacts on magnetic characterization of gadolinium oxide-based nanoparticles as new contrast agents for molecular magnetic resonance imaging. Nanoscale research letters 2012;7(1), 549.

QR CODE