簡易檢索 / 詳目顯示

研究生: 廖柏涵
Po-Han Liao
論文名稱: 以剩餘容量為基礎之鋰離子電池平衡電路
Development of a SOC-based Lithium-ion Battery Equalizer
指導教授: 劉益華
Yi-Hua Liu
口試委員: 王順忠
Shun-Chung Wang
邱煌仁
Huang-Jen Chiu
鄧人豪
Jen-Hao Teng
劉益華
Yi-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 101
中文關鍵詞: 鋰電池剩餘容量雙向降升壓轉換器電池平衡器擬合調整法
外文關鍵詞: Li-ion Battery, State of Charge, Bidirectional Buck-Boost Converter, Battery Equalizer, Curve-fitting Control
相關次數: 點閱:282下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出適用於串聯鋰離子電池並以剩餘容量為基礎之平衡電路,本文所使用的功率級架構為雙向降升壓轉換器,可以實現兩個獨立電池之間的雙向能量傳輸。由於鋰離子電池開路電壓與剩餘容量(State of Charge, SOC)關係在SOC中段較為平坦,因此以SOC為基礎之平衡演算法將較常用的以電壓為基礎之平衡演算法更能精確的達到電量平衡。
然而對以SOC為基礎之平衡演算法而言,精確的SOC估測是必需的,因此本文提出一種以開路電壓為基礎之補償型SOC估測法來提高SOC估測的準確性。另一方面,若雙向降升壓轉換器的責任週期保持不變,則平衡電流會隨著剩餘容量差值的減小而降低;這將相對地增加平衡時間。針對這個問題,本論文另提出了責任週期調整法及曲線擬合法兩種平衡演算法,這些技術可以根據SOC差異的不同調整責任週期,並保持平衡電流幾乎恆定,與固定責任週期法和責任週期調整法相比,擬合調整法相對改善27.1%和18.6%的平衡時間。


In this thesis, a state-of-charge (SOC)-based equalizing circuit for series-connected lithium-ion batteries is proposed. The power stage utilized in this thesis is a bidirectional buck-boost converter. Using this topology, bidirectional energy transfers between two individual cells can be achieved. Comparing with voltage-based balancing strategies which are widely used in equalizing circuits, SOC-based balancing strategies are more effective due to the flatness of open circuit voltage (OCV) versus SOC characteristics. For SOC-based balancing algorithms, an accurate SOC estimation is essential. In this thesis, a compensated OCV-based SOC estimation method is proposed for improving the accuracy of SOC estimation.
However, if the duty cycle of the bidirectional buck-boost converter is kept constant, the balancing current will decrease as the SOC difference decreases; this will correspondingly increase the balancing time. To deal with this problem, two balancing algorithm named varied-duty-cycle method and curve-fitting method are proposed. These presented techniques can adjust the duty cycle value according to the SOC difference and keeps the balancing current nearly constant. Comparing with fixed-duty-cycle approach and varied-duty-cycle method, the curve-fitting method can improve the balancing time by 27.1 % and 18.6 %, respectively.

目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究動機 1 1.2 文獻探討 1 1.3 研究目的 2 1.4 內容大綱 3 第二章 二次電池與平衡電路介紹 4 2.1 二次電池及相關名詞介紹 4 2.1.1 鉛酸電池 5 2.1.2 鎳鎘電池 6 2.1.3 鎳氫電池 6 2.1.4 鋰電池 6 2.2 二次電池性能比較 7 2.3 電池管理系統介紹 8 2.3.1 平衡器架構分類 10 2.3.2 被動式平衡電路 10 2.3.3 主動式平衡電路 11 第三章 雙向降升壓平衡電路 16 3.1 平衡電路架構 16 3.1.1 降升壓轉換器電路動作分析 16 3.1.2 雙向降升壓平衡電路 27 3.2 雙向降升壓平衡電路分析 30 3.2.1 電感設計 30 3.2.2 功率半導體元件設計 31 第四章 二次電池剩餘容量之估測 32 4.1 二次電池容量估測方法 32 4.1.1 開路電壓法 32 4.1.2 查表法 32 4.1.3 庫倫積分法 33 4.1.4 阻抗追蹤(Impedance Track ™) 34 4.2 本文所提之二次電池容量估測方法 34 4.2.1 電池篩選 34 4.2.2 建立曲線關係圖 37 4.2.3 本文所提電池容量估測方法 40 第五章 韌體架構及控制策略 43 5.1 平衡器韌體架構 43 5.1.1 開關驅動電路 43 5.1.2 數位訊號處理器 44 5.2 數位濾波器 45 5.2.1 濾波器簡介 45 5.2.2 數位濾波器比較 48 5.2.3 數位濾波器設計 49 5.3 量測平台介紹 54 5.3.1 LabVIEW介紹 54 5.3.2 資料擷取應用 55 5.3.3 量測電壓與保護監控介面 56 5.4 控制策略介紹 59 5.5 程式流程介紹 63 第六章 模擬與實驗結果 68 6.1 模擬結果與比較 68 6.1.1 模擬相關參數設定 68 6.1.2 模擬結果 69 6.2 實驗結果與比較 73 6.2.1 實驗相關參數設定 74 6.2.2 實驗量測波形 75 6.2.3 電池平衡曲線 79 6.2.4 平衡結果比較 84 第七章 結論與未來展望 86 7.1 結論 86 7.2 未來展望 86 參考文獻 88 圖目錄 圖2.1電池管理系統架構圖 8 圖2.2充電時電量不平衡示意圖 9 圖2.3放電時電量不平衡示意圖 9 圖2.4平衡器分類架構 10 圖2.5被動式電阻平衡電路(以四顆電池為例) 11 圖2.6主動式平衡電路整體架構 11 圖2.7切換式電容平衡電路(以四顆電池為例) 12 圖2.8單電容切換式平衡電路(以四顆電池為例) 12 圖2.9直流-直流轉換器平衡電路(以四顆電池為例) 13 圖2.10多二次繞組變壓器平衡電路(以四顆電池為例) 13 圖2.11多變壓器平衡電路(以四顆電池為例) 14 圖2.12電感型平衡電路(以四顆電池為例) 14 圖3.1降升壓式轉換器 17 圖3.2 CCM模式開關導通時等效電路 18 圖3.3 CCM模式開關截止時等效電路 19 圖3.4 CCM模式各主要元件電壓電流波形圖 21 圖3.5 DCM模式截止區間等效電路 22 圖3.6 DCM模式各主要元件電壓電流波形圖 25 圖3.7雙向降升壓電路架構圖 27 圖3.8雙向降升壓電路操作示意圖之一 28 圖3.9雙向降升壓電路操作示意圖之二 28 圖3.10雙向降升壓平衡電路概念圖 29 圖4.1電池在不同C-rate的放電曲線 33 圖4.2 LGDS318650電池外觀 35 圖4.3多功能模組化恆電位儀 36 圖4.4 EC-Lab操作介面 36 圖4.5 VSP與EC-Lab運作示意圖 37 圖4.6電池電壓對容量百分比關係圖 38 圖4.7電池內阻對容量百分比關係圖 39 圖4.8以LabVIEW實現剩餘容量估測 40 圖4.9電池容量補償示意圖 41 圖4.10以LabVIEW實現容量補償 41 圖4.11電池剩餘容量補償流程圖 42 圖5.1開關驅動電路示意圖 43 圖5.2 dsPIC33FJ16GS502腳位圖 44 圖5.3 dsPIC33FJ16GS502功能方塊示意圖 45 圖5.4被動式濾波器 46 圖5.5主動式濾波器 47 圖5.6數位濾波器示意圖 47 圖5.7 FIR濾波器架構圖 49 圖5.8選擇使用何種數位濾波器 50 圖5.9選擇濾波器類型 50 圖5.10濾波器參數設定 51 圖5.11選擇濾波器種類與階數 51 圖5.12設計之濾波器響應結果 52 圖5.13輸入頻率為100Hz時濾波器之輸入輸出電壓波形圖 53 圖5.14輸入頻率為5kHz時濾波器之輸入輸出電壓波形圖 53 圖5.15 DAQ系統圖 56 圖5.16以LabVIEW實現資料儲存至Excel 57 圖5.17以LabVIEW實現電池保護之功能 57 圖5.18電池電壓及溫度量測架構圖 58 圖5.19 LabVIEW監控程式流程圖 58 圖5.20 LabVIEW監控介面 59 圖5.21 MATLAB之cftool曲線擬合視窗 62 圖5.22電壓差與責任週期曲線擬合關係圖 63 圖5.23初始設定主程式流程圖 64 圖5.24平衡時間判斷副程式流程圖 64 圖5.25固定責任週期法電池平衡副程式流程圖 65 圖5.26責任週期調整法電池平衡副程式流程圖 66 圖5.27擬合調整法電池平衡副程式流程圖 67 圖6.1固定責任週期法電池電壓平衡曲線 69 圖6.2固定責任週期法最大與最小電池電壓差變化曲線 70 圖6.3責任週期調整法電池電壓平衡曲線 70 圖6.4責任週期調整法最大與最小電池電壓差變化曲線 71 圖6.5擬合調整法電池電壓平衡曲線 71 圖6.6擬合調整法最大與最小電池電壓差變化曲線 72 圖6.7電路實體俯視圖 73 圖6.8電路實體側視圖 74 圖6.9固定責任週期法開關波形 75 圖6.10固定責任週期法兩側開關電流波形 76 圖6.11責任週期調整法開關波形 77 圖6.12責任週期調整法兩側開關電流波形 77 圖6.13擬合調整法開關波形 78 圖6.14擬合調整法兩側開關電流波形 79 圖6.15固定責任週期法電池電壓平衡曲線 80 圖6.16責任週期調整法電池電壓平衡曲線 80 圖6.17擬合調整法電池電壓平衡曲線 81 圖6.18固定責任週期法電壓差變化曲線 81 圖6.19責任週期調整法電壓差變化曲線 82 圖6.20擬合調整法電壓差變化曲線 82 圖6.21固定責任週期法溫度變化圖 83 圖6.22責任週期調整法溫度變化圖 83 圖6.23擬合調整法溫度變化圖 84 圖6.24三種控制法平衡結果比較圖 85

[1] Alimul Haque Khan; Kazi Rehnuma Zafreen; Mir Muntasir Hossain; Maidul Islam “A Review of Current Renewable Energy Activities in Bangladesh,” 2015 3rd International Conference on Green Energy and Technology (ICGET) , pp.1-5, Aug. 2015.
[2] S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez and A. Emadi, “Energy Storage Systems For Automotive Applications,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 6, pp. 2258-2267, Jun. 2008.
[3] P. Yang and A. Nehorai, “Joint Optimization of Hybrid Energy Storage and Generation Capacity With Renewable Energy,” IEEE Transactions on Smart Grid, Vol. 5, No. 4, pp. 1566-1574, Jun. 2014.
[4] J. Arai, K. Iba, T. Funabashi, Y. Nakanishi, K. Koyanagi and R. Yokoyama, “Power electronics and its applications to renewable energy in Japan,” IEEE Circuits and Systems Magazine, Vol. 8, No. 3, pp. 52-66, Aug. 2008.
[5] Matthew T. Lawder; Bharatkumar Suthar; Paul W. C. Northrop; Sumitava De; C. Michael Hoff; Olivia Leitermann; Mariesa L. Crow; Shriram Santhanagopalan; Venkat R. Subramanian, “Battery Energy Storage System (BESS) and Battery Management System (BMS) for Grid-Scale Applications” IEEE Circuits and Systems Magazine,Vol. 102, pp. 1014-1030,2014.
[6] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi and C. Tassoni, “Battery choice and management for new-generation electric vehicles,” IEEE Transactions on Industrial Electronics, Vol. 52, No. 5, pp. 1343-1349, Oct. 2005.

[7] A. Emadi, Y. J. Lee and K. Rajashekara, “Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles,” IEEE Transactions on Industrial Electronics, Vol. 55, No. 6, pp. 2237-2245, Jun. 2008.
[8] A. Manenti, A. Abba; A. Merati, S. M. Savaresi, A. Geraci, “A New BMS Architecture Based on Cell Redundancy,” IEEE Transactions on Industrial Electronics, Vol.58, No9, pp.4314-4322, 2011.
[9] J. Chatzakis, K. Kalaitzakis, N. C. Voulgaris and S. N. Manias, “Designing a New Generalized Battery Management System,” IEEE Transactions on Industrial Electronics, Vol. 50, No. 5, pp. 990-999, Oct. 2013.
[10] N. H. Kutkut, H. L. N. Wiegman, D. M. Divan and D. W. Novotny, “Design Considerations for Charge Equalization of an Electric Vehicle Battery System,” IEEE Symposium on Industrial Electronics and Applications, Vol. 35, No. 1, pp. 28-35, Jan./Feb. 1999.
[11] P. T. Krein and R.S. Balog, “Life Extension Through Charge Equalization of Lead-Acid Batteries,” in Proceedings of the 24th Annual International Telecommunications Energy Conference (INTELEC), pp. 516-523, Sep./Oct. 2002.
[12] P. T. Krein, S. West and C. Papenfuss, “Equalization Requirement for Series VRLA Batteries,” in Proceedings of the 16th Annual Battery Conference on Applications and Advances, pp. 125-130, Jan. 2001.
[13] S. West and P. T. Krein, “Equalization of Value-Regulated Lead-Acid Batteries: Issues and Life Test Result,” in Proceedings of the 22nd International Telecommunications Energy Conference (INTELEC), pp. 439-446, Sep. 2000.

[14] L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, “A review on the key issues for lithium-ion battery management in electric vehicles,” Journal of Power Sources, Vol. 226, pp. 272-288, Mar. 2013.
[15] H. Oman, “Making Batteries Last Longer,” IEEE Aerospace &Electrics Systems Magazine, Vol. 14, No. 9, pp. 19-21, 1999.
[16] T. A. Stuart, W. Zhu, “Modularized battery management for large lithium ion cells,” Journal of Power Sources, Vol.196, No.1, pp.458-464, 2011.
[17] Markus Einhorn; Werner Roessler; Juergen Fleig, “Improved Performance of Serially Connected Li-Ion Batteries With Active Cell Balancing in Electric Vehicles,” IEEE Transactions on Industry Applications, Vol.60, No.6, pp.2448-2457, 2011.
[18] B. S. Sagar, B. P. Divakar, K. S. V. Prasad, “Series battery equalization using sequential difference algorithm,” Advances in Electronics, Computers and Communications (ICAECC), 2014 International Conference, pp.1-6, 2014.
[19] S. Yarlagadda, T. T. Hartley, I. Husain, “A Battery Management System Using an Active Charge Equalization Technique Based on a DC/DC Converter Topology,” IEEE Transactions on Industry Applications, Vol.49, No.6, pp.2720-2729, 2013.
[20] J. G. Lozano, E. R. Cadaval, M. I. M. Montero, M. A. G.Martinez, “A novel active battery equalization control with on-line unhealthy cell detection and cell change decision,” Journal of Power Sources, Vol.299, pp.356-370, 2015.
[21] YuejiuZheng,MinggaoOuyang,LanguangLu,JianqiuLi,XuebingHan,LiangfeiXu“On-line equalization for lithium-ion battery packs based on charging cell voltages: Part 1. Equalization based on remaining charging capacity estimation” Journal of Power Sources, Vol.247, pp.676-686, 2014.

[22] YuejiuZheng,MinggaoOuyang,LanguangLu,JianqiuLi,XuebingHan,LiangfeiXu“On-line equalization for lithium-ion battery packs based on charging cell voltages: Part 2. Fuzzy logic equalization” Journal of Power Sources, Vol.247, pp.460-466, 2014.
[23] D. Dane Quinn, Tom T. Hartley, “Design of novel charge balancing networks in battery packs,” Journal of Power Sources, Vol.240, pp.26-32, 2014.
[24] Y. Shang, C, Zhang, N, Cui, J, M. Guerrero, “A Cell-to-Cell Battery Equalizer With Zero-Current Switching and Zero-Voltage Gap Based on Quasi-Resonant LC Converter and Boost Converter,” IEEE Transactions on Power Electronics, Vol.30, No.7, pp.3731-3747.
[25] C. H. Kim, M. Y. Kim, H. S. Park, G. W. Moon, “A Modularized Two-Stage Charge Equalizer With Cell Selection Switches for Series-Connected Lithium-Ion Battery String in an HEV,” IEEE Transactions on Power Electronics, Vol.27, No.8, pp.3764-3774, 2012.
[26] P. A. Cassani and S. S. Williamson, “Design, Testing, and Validation of a Simplified Control Scheme for a Novel Plug-In Hybrid Electric Vehicle Battery Cell Equalizer,” IEEE Transactions on Industrial Electronics, Vol. 57, No. 12, pp. 3956-3962, Dec. 2010.
[27] Hong-Sun Park; Chol-Ho Kim; Ki-Bum Park; Gun-Woo Moon; Joong-Hui Lee“Design of a Charge Equalizer Based on Battery Modularization” IEEE Transactions on Power Electronics, Vol.58, No.7, pp.3216-3223.
[28] W. C. Lee and D. Drury, “Development of a Hardware-in-the-Loop Simulation System for Testing Cell Balancing Circuits,” IEEE Transactions on Power Electronics, Vol. 28, No. 12, pp. 5949-5959, Dec. 2013.
[29] D. V. Cadar, D. M. Petreus and T. M. Pararau, “An Energy converter method for battery cell Balancing.” in Proceedings of the 33rd International Spring Seminar on Electronics Technology (ISSE). pp. 290-293. May. 2010
[30] H. S. Park, C. E. Kim, C. H. Kim and G. W. Moon, J. H. Lee, “A Modularized Charge Equalizer for an HEV Lithium-Ion Battery String,” IEEE Transactions on Industrial Electronics, Vol. 56, No. 5, pp. 1464-1476, May. 2009.
[31] Y. Xing, E. W. M. Ma, K. L. Tsui and M. Pecht, “Battery Management Systems in Electric and Hybrid Vehicles,” Energies, Vol. 4, No. 11, pp. 1840-1857, Oct. 2011.
[32] F. Baronti, R. Roncella, R. Saletti, “Performance comparison of active balancing techniques for lithium-ion batteries,” Journal of Power Sources, Vol.267, pp.603-609, 2014.
[33] Youngchul Lee, Youngchul Lee, Sungwoo Bae, “Comparison on Cell Balancing Methods for Energy Storage Applications” ResearchGate , 2016.
[34] J. W. Kimball, P. T. Krein, “Analysis and design of switched capacitor converters,” Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, Vol.3, pp.1473-1477, 2005.
[35] Yuanmao Ye , Ka Wai Eric Cheng “An Automatic Switched-Capacitor Cell Balancing Circuit for Series-Connected Battery Strings” MDPI — Energies Vol.138, 2016.
[36] R. Lu, C. Zhu, L. Tian, Q. Wang, “Super-Capacitor Stacks Management System With Dynamic Equalization Techniques,” IEEE Transactions on Magnetics, Vol.43, No.1, pp.254-258, 2007.
[37] A. C. Baughman, M. Ferdowsi, “Double-Tiered Switched-Capacitor Battery Charge Equalization Technique,” IEEE Transactions on Industrial Electronics, Vol.55, No.6, pp.2277-2285,2008.
[38] C. Pascual and P. T. Krein, “Switched Capacitor System for Automatic Series Battery Equalization,” in Proceedings of the 12th IEEE Annual Applied Power Electronics Conference and Exposition (APEC), pp. 848-854, Feb. 1997.
[39] M.-Y. Kim, C.-H. Kim, J.-H. Kim and G.-W. Moon, “A Chain Structure of Switched Capacitor for Improved Cell Balancing Speed of Lithium-Ion Batteries,” IEEE Transactions on Industrial Electronics, Vol. 61, No. 8, pp. 3989-3999, Aug. 2014.
[40] J. M. Henry and J. W. Kimball, “Practical performance analysis of complex switched-capacitor converters,” IEEE Transactions on Power Electronics, Vol. 26, No. 1, pp. 127-136, Jan. 2011.
[41] M. D. Seeman and S. R. Sanders, “Analysis and Optimization of Switched-Capacitor DC–DC Converters,” IEEE Workshops on Computers in Power Electronics (COMPEL), pp. 216-224, July. 2006.
[42] T. M. Van Breussegem, M. Wens, D. Geukens, D. Geys and M. S. J. Steyaert, “Area-driven optimisation of switched-capacitor DC/DC converters,” Electronics Letters, Vol. 44, No. 25, pp. 1488-1489, Dec. 2008.
[43] T. Tanzawa, “On Two-Phase Switched-Capacitor Multipliers With Minimum Circuit Area,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 57, No. 10, pp. 2602-2608, Oct. 2010.
[44] Y.-S. Lee and M.-W. Cheng, “Intelligent Control Battery Equalization for Series Connected Lithium-Ion Battery Strings,” IEEE Transactions on Industrial Electronics, Vol. 52, No. 5, pp. 1297-1307, Oct. 2005.

[45] M. Einhorn, W. Guertlschmid, T. Blochberger, R. Kumpusch, R. Permann, F. V. Conte, C. Kral and J. Fleig, “A Current Equalization Method for Serially Connected Battery Cells Using a Single Power Converter for Each Cell,” IEEE Transactions on Vehicular Technology, Vol. 60, No. 9, pp. 4227-4237, Nov. 2011.
[46] Y. H. Hsieh, T. J. Liang, S. M. O. Chen, W. Y. Horng and Y. Y. Chung, “A Novel High-Efficiency Compact-Size Low-Cost Balancing Method for Series-Connected Battery Applications,” IEEE Transactions on Power Electronics, Vol. 28, No. 12, pp. 5927-5939, Dec. 2013.
[47] A. M. Imtiaz and F. H. Khan, “Time Shared Flyback Converter Based Regenerative Cell Balancing Technique for Series Connected Li-Ion Battery Strings,” IEEE Transactions on Power Electronics, Vol. 28, No. 12, pp. 5960-5975, Dec. 2013.
[48] 許甯易,「具雙向返馳式轉換器之串聯電池組電量主動平衡技術」,國立台灣科技大學電子工程系碩士學位論文,民國一百零四年七月。
[49] 林冠中,「運用數位控制雙向返馳式轉換器之電量平衡電路」,國立台灣科技大學電子工程系碩士學位論文,民國一百零四年七月。
[50] 吳詠嘉,「以模糊控制為基礎之鋰離子電池平衡電路」,國立台灣科技大學電機工程系碩士學位論文,民國一百零五年七月。
[51] D.-H. Zhang, G.-R. Zhu, S.-J. He, S. Qiu, Y. Ma, Q.-M. Wu and W. Chen, “Balancing Control Strategy for Li-Ion Batteries String Based on Dynamic Balanced Point,” Energies, Vol. 8, No. 3, pp. 1830-1847, Mar. 2015.
[52] J. Xu, S. Li, C. Mi, Z. Chen and B. Cao, “SOC Based Battery Cell Balancing with a Novel Topology and Reduced Component Count,” Energies, Vol. 6, No. 6, pp. 2726-2740, May 2013.
[53] C. S. Moo, Y. C. Hsieh and I. S. Tsai, “Charge equalization for series-connected batteries,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 2, pp. 704-710, Apr. 2003.
[54] F. Mestrallet, L. Kerachev, J.-C. Crebier and A. Collet, “Multiphase Interleaved Converter for Lithium Battery Active Balancing,” IEEE Transactions on Power Electronics, Vol. 29, No. 6, pp. 2874-2881, Jun. 2014.
[55] B. Dong, Y. Li and Y. Han, “Parallel Architecture for Battery Charge Equalization,” IEEE Transactions on Power Electronics, Vol. 30, No. 9, pp. 4906-4913, Sep. 2015.
[56] A. Baughman; M. Ferdowsi, “Double-tiered capacitive shuttling method for balancing series-connected batteries” pp. 109-113, Sep. 2005.
[57] J. Xu, S. Li, C. Mi, Z. Chen, B. Cao, “SOC Based Battery Cell Balancing with a Novel Topology and Reduced Component Count,” Energies,Vol.6, No.6, pp.2726-2740, 2013.
[58] N. H. Kutkut, “A modular nondissipative current diverter for EV battery charge equalization,” Applied Power Electronics Conference and Exposition, 1998. APEC '98. Conference Proceedings 1998., Thirteenth Annual,Vol.2, pp.686-690,1998.
[59] B. Dong, Y. Li, Y. Han, “Parallel Architecture for Battery Charge Equalization,” IEEE Transactions on Power Electronics, Vol.30, No.9, pp.4906-4913, 2015.
[60] D.-H. Zhang, G.-R. Zhu, S.-J. He, S. Qiu, Y. Ma, Q.-M. Wu and W. Chen, “Balancing Control Strategy for Li-Ion Batteries String Based on Dynamic Balanced Point,” Energies, Vol. 8, No. 3, pp. 1830-1847, Mar. 2015.

[61] Yuang-Shung Lee; Guo-Tian Chen, “ZCS bi-directional DC-to-DC converter application in battery equalization for electric vehicles” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol.4, pp. 2766-2772,2004
[62] Yuang-Shung Lee; Chun-Yi Duh; Guo-Tian Chen; Shen-Ching Yang, “Battery Equalization Using Bi-directional Cuk Converter in DCVM Operation s” IEEE Journal of Emerging and Selected Topics in Power Electronics,pp. 765-771,2005
[63] Yuang Shung Lee; Szu Han Chen; Yi Pin Ko, “Micro-Controller Unit Application in Fuzzy Battery Equalization Control for Battery String”IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol.3, pp.2110-2115,2006
[64] Yuang-Shung Lee; Cheng-En Tsai; Yi-Pin Ko; Ming-Wang Cheng, “Charge equalization using quasi-resonant converters in battery string for medical power operated vehicle application” IEEE Journal of Emerging and Selected Topics in Power Electronics, pp.2722-2728,2010
[65] Yuang-Shung Lee; Chii-Wen Jao, “Fuzzy controlled lithium-ion battery equalization with state-of-charge estimator”IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol.5, pp.4431-4438,2003
[66] Yuang Shung Lee; Szu Han Chen; Yi Pin Ko “Micro-Controller Unit Application in Fuzzy Battery Equalization Control for Battery String” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol.3, pp.2110-2115,2006
[67] J. Yan, Z. Cheng, G. Xu, H. Qian, Y. Xu, “Fuzzy Control for Battery Equalization Based on State of Charge,” Vehicular Technology Conference Fall (VTC 2010-Fall), pp.1-7, 2010.

[68] Dorin Cadar; Dorin Petreus; Toma Patarau; Radu Etz, “Fuzzy controlled energy converter equalizer for lithium ion battery packs” International Conference on Power Engineering, Energy and Electrical Drives, pp.1-6, 2011.
[69] Chang-Soon Lim; Rae-Young Kim; Dong-Seok Hyun,“Battery voltage sensorless charge equalizer using the multi-winding transformer”2012 IEEE Vehicle Power and Propulsion Conference, pp.789-793, 2012.
[70] Sang-Hyun Park; Tae-Sung Kim; Jin-Sik Park; Gun-Woo Moon; Myung-Joong Yoon,“A new battery equalizer based on buck-boost topology” 2007 7th Internatonal Conference on Power Electronics, pp. 962 - 965, 2007
[71] Sang-Hyun Park; Tae-Sung Kim; Jin-Sik Park; Gun-Woo Moon; Myung-Joong Yoon,“A New Buck-boost Type Battery Equalizer” 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, pp. 1246 -1250, 2009
[72] Weigui Ji; Xi Lu; Yuan Ji; Yingbin Tang; Feng Ran; Fang Zheng Peng,“Low cost battery equalizer using buck-boost and series LC converter with synchronous phase-shift control” 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1152-1157, 2013
[73] 歐陽文億,「串聯電池組雙向電量平衡電路」,國立中山大學電機工程學系碩士論文,民國九十四年六月。
[74] Shubiao Wang, Longyun Kang, Xiangwei Guo, Zefeng Wang and Ming Liu,“A Novel Layered Bidirectional Equalizer Based on a Buck-Boost Converter for Series-Connected Battery Strings” Energies 2017, 10(7), 1011

[75] Yuang-Shung Lee; Ming-Wang Chen; Ko-Lin Hsu; Jiun-Yi Du; Ching-Fang Chuang,“Cell equalization scheme with energy transferring capacitance for series connected battery strings” TENCON '02. Proceedings. 2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering, Vol.3, pp.2042-2045, 2002.
[76] 吳敏旭,「串聯電池組電池管理系統之開發」,長庚大學電機研究所論文,民國九十三年五月。
[77] 莊繼聖,「雙向式主動平衡器之研製」,國立台灣科技大學電機工程所碩士學位論文,民國一百零四年七月。
[78] 李世興編譯,「電池活用手冊」,全華科技圖書,民國八十五年一月。
[79] 劉彥余,「最佳化鋰電池充電法則研究與充電電路之實現」,國立台灣科技大學電子工程系碩士學位論文,民國九十七年一月。
[80] 羅一峰,「鋰電池最佳化充電之研究」,國立台灣科技大學電機工程系博士學位論文,民國九十九年七月。
[81] 劉俊良,「以模糊田口基礎之新型模糊五階段電池充電器」,國立台灣科技大學電機工程系博士學位論文,民國一百零三年七月。
[82] 陳蓉賢,「以模糊控制為基礎之鋰離子電池模組充電技術開發」,國立台灣科技大學電機工程系博士學位論文,民國一百零一年七月。
[83] M. Y. Kim, C. H. Kim, J. H. Kim, G. W. Moon, “A Modularized BMS with an Active Cell Balancing Circuit for Lithium-Ion Batteries in V2G System,” 2012 IEEE Vehicle Power and Propulsion Conference, pp.401-406, 2012.
[84] 吳敏旭,「串聯電池組電池管理系統之開發」,長庚大學電機研究所論文,民國九十三年五月。

[85] J. W. Kimball, B. T. Kuhn and P. T. Krein, “Increased Performance of Battery Packs by Active Equalization,” in Proceedings of the IEEE Vehicle Power and Propulsion Conference (VPPC), pp. 323-327, Sep. 2007.
[86] J. Cao, N. Schofield and A. Emadi, “Battery Balancing Methods: A Comprehensive Review,” in Proceedings of the Vehicle Power and Propulsion Conference (VPPC), pp. 1-6, Sep. 2008.
[87] 吳義利編譯,「切換式電源轉換器」,文笙書局,2015。
[88] Erickson,Robert W.,Fundamentals of Power Electronics Second Edition, SCI-TECH Publishing, 2001.
[89] 呂文隆、張簡士琨、曾國境編譯,「交換式電源設計」,全華科技圖書,2012。
[90] 歐勝源編譯,「電力電子學 1/e」,東華書局,2013。
[91] 林彥任,「數位電流控制模式返馳式轉換器之研製」,國立台灣科技大學電機工程系碩士學位論文,民國一百年七月。
[92] 簡正賢,「數位化控制單級返馳式功率因數修正器之研製」,國立台灣科技大學電機工程系碩士學位論文,民國一百零一年七月。
[93] 莊繼聖,「雙向式主動平衡器之研製」,國立台灣科技大學電機工程所碩士學位論文,民國一百零四年七月。
[94] 歐陽文億,「串聯電池組雙向電量平衡電路」,國立中山大學電機工程學系碩士論文,民國九十四年六月。
[95] Xiangjun Zhang, Hankui Liu, Dianguo Xu, “Analysis and Design of the Flyback Transformer,” Industrial Electronics Society, 2003. IECON '03. The 29th Annual Conference of the IEEE, pp.715-719, 2003.
[96] 陳重諺,「以交流阻抗為基礎之鋰離子電池殘餘容量估測技術研究」,國立台灣科技大學電機工程學系碩士論文,2014年1月。
[97] 蕭維誠,「以微處理機為基礎之鋰鐵電池容量估測系統」,國立高雄應用科技大學電機工程學系碩士論文,2014年7月。
[98] 陳俊達,「鋰離子電池剩餘容量估測系統之研製」,國立台灣科技大學電機工程學系碩士論文,2012年7月。
[99] Z. X. Miao, L. Xu, V. R. Disfani, and L. L. Fan, “An SOC-Based Battery Management System for Microgrids” IEEE Trans. on Smart Grid, vol. 5, no. 2, pp. 966-973. (2014)
[100] L. Pei, R. G. Lu, and C. B. Zhu, “Relaxation Model of the Open-Circuit Voltage for State-of-Charge Estimation in Lithium-Ion Batteries,” IET Electrical System in Transportation, vol. 3, no. 4, pp. 112-117. (2013)
[101] M. Coleman, C. K. Lee, C. B. Zhu, and W. G. Hurley, “State-of-Charge Determination from EMF Voltage Estimation : Using Impedance, Terminal Voltage, and Current for Lead-Acid and Lithium-Ion Batteries,” IEEE Trans. on Industrial Electronics, vol. 54, No. 5, pp. 2550-2557. (2007)
[102] M. W. Cheng, Y. S. Lee, M. Liu, and C. C. Sun, “State-of-Charge Estimation with Aging Effect and Correction for Lithium-Ion Battery,” IET Electrical System in Transportation, vol.5, no.2, pp. 70-76. (2015)
[103] Y. S. Lee, W. Y. Wang, and T. Y. Kuo, “Soft Computing for Battery State-of-Charge (BSOC) Estimation in Battery String Systems,” IEEE Trans. on Industrial Electronics, vol. 55, no. 1, pp. 229-239. (2008)
[104] C. P. Zheng, L. Y. Wang, X. Li, W. Chen, G. Yin, and J. C. Jiang, “Robust and Adaptive Estimation of State of Charge for Lithium-Ion Batteries,” IEEE Trans. on Industrial Electronics, vol. 62, no. 8, pp. 4948-4957. (2015)
[105] TOSHIBA, ”TLP250" Power MOS FET Gate Drive, “ Datasheet, 2004.
[106] Microchip Technology Inc, “dsPIC33FJ06GS101/X02 and dsPICFJ16GSX02/X04,”
[107] 黃士銘,「高效率雙向直流-直流轉換器研製」,國立台灣科技大學電機工程所碩士學位論文,民國一百零三年一月。
[108] 鄭力仁,「雙向升降壓直流-直流轉換器研製」,國立台灣科技大學電機工程所碩士學位論文,民國一百零四年七月。
[109] 惠汝生編譯,「LabVIEW 8.X圖控程式應用」,全華科技圖書,民國九十五年十月。
[110] 蕭子健、王智昱、儲昭偉,「LabVIEW進階篇」,高立圖書,民國八十九年五月。
[111] 蕭子健、王智昱、儲昭偉,「虛擬儀控程式設計-LabVIEW7X」,高立圖書,民國九十三年三月。
[112] LabVIEW Data Acquisition and Signal Conditioning Course, National Instruments, 2011.W
[113] 陸光中、蕭子健,「LabVIEW & Microsoft 的整合實例(I)」,高立圖書,民國九十三年十二月。
[114] PSIM User's Guide, Powersim Inc., 2003.

無法下載圖示 全文公開日期 2023/08/30 (校內網路)
全文公開日期 2028/08/30 (校外網路)
全文公開日期 2028/08/30 (國家圖書館:臺灣博碩士論文系統)
QR CODE