簡易檢索 / 詳目顯示

研究生: 張瑋哲
Wei Jhe Chang
論文名稱: 高分子塗層對矽碳複材電極在鋰離子電池 陽極效能的影響
Performance of polymer coating silicon-carbon electrode as anode for lithium-ion battery
指導教授: 林昇佃
Shawn D. Lin
口試委員: 趙基揚
Chi-Yang Chao
吳溪煌
She-Huang Wu
邱昱誠
Yu-Cheng Chiu
林昇佃
Shawn D. Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 95
中文關鍵詞: 鋰離子電池陽極表面塗層矽碳電極
外文關鍵詞: lithium ion battery, anode, surface coating, silicon carbon electrode
相關次數: 點閱:313下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用高分子塗層碳材和矽材,測試矽材高分子塗層對所製
備矽碳電極效能的影響,使用高分子塗層可以利用碳材和矽材表面電
荷相異,使矽材能分散在碳材表面,有效分散奈米矽能避免矽鋰化過
程的高體積膨脹造成電極損害。高分子塗層也可能兼具人工固體電解
質中間相層角色,可能減少電極的電阻。研究先分析 MCMB 碳材粒
徑,球磨處理等操作參數的影響,結果顯示當碳越多小粒徑尺寸,會
有電極電容量提升和庫倫效率降低的效果,但對電極循換壽命無顯著
助益。
研究分析使用邱昱誠教授研究室的自修復高分子作為矽塗層,期
望高分子藉由氫鍵或共價鍵生成的自修復特性,減少鋰化矽膨脹造成
電極損害。結果顯示使用丙烯酸丁酯和正羥甲基丙烯醯胺組成的高分
子塗層對矽碳電極效能無提升作用,顯示只依賴氫鍵自修復功能的高
分子塗層矽材無法有效延長電極壽命。當使用添加苯乙烯或甲基丙烯
酸磺基甜菜鹼的高分子組成,可以提升高分子應力,也使得電極電容
量提升,其中以添加 10%苯乙烯的高分子可以獲最佳循環充放電穩定
性和電容量。進一步測試比較此高分子的分子量與塗層用量比例的影
響,結果顯示測試組內的分子量對電極表現沒顯著影響,而隨著高分
子塗層用量增加,矽碳電極的庫倫效率和循環穩定性有較佳的提升效
果。


This study applies polymer coating on carbon(MCMB) and silicon for
fabricating Si-C composite electrode. Polymer coating can change surface
charge of silicon and MCMB for their to assemble via electrostatic
attaction. Effective dispersion of nanosilicon on MCMB can reduce
damage to electrode from high volume expansion of lithiated silicon.
Polymer coating can also function as artificial solid electrolyte interphase
to reduce electrode resistance. Firstly, this study discusses the influence of
MCMB particle size and ball milling treatment. The results show that
smaller MCMB can induce higher capacity but lower coulombic efficiency
of electrode, and the electrode cyclic life is not improved.
This study also examines using self-healing polymer(SHP, from
professor Chiu’s lab) to coat silicon particles, expecting SHP to maintain
electrode structure. When lithiated silicon expands, SHP can possibly help
restoring electrode to its original structure and consequently reduced
electrodes damage. The results show that SHP of random polymer of Butyl
acrylate(BA) and N-methylolacrylamide(NMA) cannot improve electrode
performance. However, the electrodes can have a higher capacity when
sulfobetaine methacrylate(SBMA) and styrene(St) is included partly
replace replace BA. The SHP containing 10%St achieves the best cyclic
life and capacity among all polymer coating examined in this study. The
influences of molecular weight(MW) and polymer coating proportion
using 10%St-SHP are examined. Results showed that the MW examined
does not cause significant influence but increasing polymer coating
proportion results in electrode of improved coulombic efficiency and
cyclic life.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 X 第1章 緒論 1 1.1 前言 1 1.2 鋰離子電池 1 1.3 文獻回顧 3 1.3.1 矽碳複合材料 3 1.3.2 海藻酸鈉作為黏著劑 5 1.3.3 電解質添加劑 6 1.3.4 高分子塗層 8 1.4 研究目的與方法 11 第2章 實驗設備與方法 12 2.1 實驗設備 12 2.2 實驗藥品 14 2.3 材料合成 16 2.3.1 碳塗層PDDA 16 2.3.2 矽塗層triton X100 / 邱昱誠教授團隊的高分子 16 2.3.3 矽碳混合 16 2.3.4 矽碳球磨混合 17 2.4 界達電位 18 2.5 掃描式電子顯微鏡 18 2.6 熱重分析儀 19 2.7 雷射粒徑分析儀 20 2.8 電極製作 20 2.9 鋰電池組裝 22 2.10 充放電測試 22 2.11 交流阻抗分析 23 第3章 結果與討論 24 3.1 表面塗層對矽碳電極的影響 24 3.1.1 材料表面電荷分析 24 3.1.2 電極電性分析 29 3.1.3 球磨混合對矽碳複合電極的影響 39 3.2 矽球塗層高分子對矽碳電極的影響 47 3.2.1 材料表面電荷分析 50 3.2.2 電極電性分析 54 第4章 結論 78 第5章 參考文獻 79 附錄 A 商購MCMB 83 附錄 B 充放電電容量和電壓關係圖 84 附錄 C 台科大邱昱誠團隊製備高分子結構與特性分析 87 附錄 D 雷射光繞射儀分析 90 附錄 E 交流阻抗分析 92 附錄 F 電極橫切面SEM圖 95

[1] 吳永富, 電化學工程應用. 五南圖書出版股份有限公司, 2019.
[2] 陳怡岫, "高分散性矽碳複合結構及原子層修飾應用於鋰離子電池矽負極之研究," 國立臺灣科技大學, 2014.
[3] 江恒瑋, "提升矽陽極鋰離子電池之循環穩定性之研究," 國立臺灣師範大學, 2013.
[4] H. Wu and Y. Cui, "Designing nanostructured Si anodes for high energy lithium ion batteries," Nano today, vol. 7, no. 5, pp. 414-429, 2012.
[5] U. Kasavajjula, C. Wang, and A. J. Appleby, "Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells," Journal of power sources, vol. 163, no. 2, pp. 1003-1039, 2007.
[6] B. Hertzberg, A. Alexeev, and G. Yushin, "Deformations in Si− Li anodes upon electrochemical alloying in nano-confined space," Journal of the American Chemical Society, vol. 132, no. 25, pp. 8548-8549, 2010.
[7] X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, "Size-dependent fracture of silicon nanoparticles during lithiation," ACS nano, vol. 6, no. 2, pp. 1522-1531, 2012.
[8] G. Wang, J. Yao, and H.-K. Liu, "Characterization of nanocrystalline Si-MCMB composite anode materials," Electrochemical and Solid State Letters, vol. 7, no. 8, p. A250, 2004.
[9] I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov, and G. Yushin, "A major constituent of brown algae for use in high-capacity Li-ion batteries," Science, vol. 334, no. 6052, pp. 75-79, 2011.
[10] J. Xu, L. Zhang, Y. Wang, T. Chen, M. Al-Shroofy, and Y.-T. Cheng, "Unveiling the critical role of polymeric binders for silicon negative electrodes in lithium-ion full cells," ACS applied materials & interfaces, vol. 9, no. 4, pp. 3562-3569, 2017.
[11] H. Nakai, T. Kubota, A. Kita, and A. Kawashima, "Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes," Journal of The Electrochemical Society, vol. 158, no. 7, p. A798, 2011.
[12] M. Ulldemolins, F. Le Cras, B. Pecquenard, V. Phan, L. Martin, and H. Martinez, "Investigation on the part played by the solid electrolyte interphase on the electrochemical performances of the silicon electrode for lithium-ion batteries," Journal of Power Sources, vol. 206, pp. 245-252, 2012.
[13] L. Chen, K. Wang, X. Xie, and J. Xie, "Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries," Journal of Power Sources, vol. 174, no. 2, pp. 538-543, 2007.
[14] H. Wilhelm, C. Marino, A. Darwiche, L. Monconduit, and B. Lestriez, "Significant electrochemical performance improvement of TiSnSb as anode material for Li-ion batteries with composite electrode formulation and the use of VC and FEC electrolyte additives," Electrochemistry Communications, vol. 24, pp. 89-92, 2012.
[15] F.-S. Li, Y.-S. Wu, J. Chou, and N.-L. Wu, "A dimensionally stable and fast-discharging graphite–silicon composite Li-ion battery anode enabled by electrostatically self-assembled multifunctional polymer-blend coating," Chemical Communications, vol. 51, no. 40, pp. 8429-8431, 2015.
[16] Y. Sun, J. Lopez, H. W. Lee, N. Liu, G. Zheng, C. L. Wu, J. Sun, W. Liu, J. W. Chung, and Z. Bao, "A stretchable graphitic carbon/Si anode enabled by conformal coating of a self‐healing elastic polymer," Advanced Materials, vol. 28, no. 12, pp. 2455-2461, 2016.
[17] H. Chen, Z. Wu, Z. Su, S. Chen, C. Yan, M. Al-Mamun, Y. Tang, and S. Zhang, "A mechanically robust self-healing binder for silicon anode in lithium ion batteries," Nano Energy, vol. 81, p. 105654, 2021.
[18] X. Zhou, Y. X. Yin, L. J. Wan, and Y. G. Guo, "Self‐assembled nanocomposite of silicon nanoparticles encapsulated in graphene through electrostatic attraction for lithium‐ion batteries," Advanced Energy Materials, vol. 2, no. 9, pp. 1086-1090, 2012.
[19] 李富生,吳乃立,周憲聰,吳玉祥,陳伯坤, "碳矽複合電極材料及其製備方法," 台灣 Patent Appl. I511358, 2015.
[20] J. Hagberg, H. A. Maples, K. S. Alvim, J. Xu, W. Johannisson, A. Bismarck, D. Zenkert, and G. Lindbergh, "Lithium iron phosphate coated carbon fiber electrodes for structural lithium ion batteries," Composites Science and Technology, vol. 162, pp. 235-243, 2018.
[21] S. Ng, J. Wang, Z. Guo, J. Chen, G. Wang, and H. Liu, "Single wall carbon nanotube paper as anode for lithium-ion battery," Electrochimica Acta, vol. 51, no. 1, pp. 23-28, 2005.
[22] T.-Y. Huang, B. Selvaraj, H.-Y. Lin, H.-S. Sheu, Y.-F. Song, C.-C. Wang, B. J. Hwang, and N.-L. Wu, "Exploring an interesting Si source from photovoltaic industry waste and engineering it as a Li-ion battery high-capacity anode," ACS Sustainable Chemistry & Engineering, vol. 4, no. 10, pp. 5769-5775, 2016.
[23] H. Liu, Z. Shan, W. Huang, D. Wang, Z. Lin, Z. Cao, P. Chen, S. Meng, and L. Chen, "Self-assembly of silicon@ oxidized mesocarbon microbeads encapsulated in carbon as anode material for lithium-ion batteries," ACS applied materials & interfaces, vol. 10, no. 5, pp. 4715-4725, 2018.
[24] 陈继涛, 周恒辉, 常文保, and 慈云祥, "粒度对石墨负极材料嵌锂性能的影响," 物理化学学报, vol. 19, no. 3, pp. 278-282, 2003.
[25] M. Herstedt, L. Fransson, and K. Edström, "Rate capability of natural Swedish graphite as anode material in Li-ion batteries," Journal of power sources, vol. 124, no. 1, pp. 191-196, 2003.
[26] C. Wang, G. Wu, and W. Li, "Lithium insertion in ball-milled graphite," Journal of Power Sources, vol. 76, no. 1, pp. 1-10, 1998.
[27] D.-E. Yoon, C. Hwang, N.-R. Kang, U. Lee, D. Ahn, J.-Y. Kim, and H.-K. Song, "Dependency of electrochemical performances of silicon lithium-ion batteries on glycosidic linkages of polysaccharide binders," ACS applied materials & interfaces, vol. 8, no. 6, pp. 4042-4047, 2016.
[28] A. N. Ubaidillah, "具有高離子電導率鋰離子電池的基於動態氫鍵的可拉伸自修復固體聚合物電解質," 國立臺灣科技大學, 2021.
[29] Z. Tian, X. He, W. Pu, C. Wan, and C. Jiang, "Preparation of poly (acrylonitrile–butyl acrylate) gel electrolyte for lithium-ion batteries," Electrochimica Acta, vol. 52, no. 2, pp. 688-693, 2006.
[30] N. Byrne, P. C. Howlett, D. R. Macfarlane, M. E. Smith, A. Howes, A. F. Hollenkamp, T. Bastow, P. Hale, and M. Forsyth, "Effect of zwitterion on the lithium solid electrolyte interphase in ionic liquid electrolytes," Journal of power sources, vol. 184, no. 1, pp. 288-296, 2008.
[31] I. Phiri, C. Y. Bon, M. Mwemezi, L. Hamenu, A. Madzvamuse, J. H. Park, K. S. Lee, J. M. Ko, and Y. Lu, "Enhanced electrolyte performance by adopting Zwitterionic lithium-silica sulfobetaine silane as electrolyte additive for lithium-ion batteries," Materials Chemistry and Physics, vol. 243, p. 122577, 2020.
[32] W. Diao, L. Wu, X. Ma, L. Wang, X. Bu, W. Ni, X. Yang, and Y. Fang, "Reversibly highly stretchable and self‐healable zwitterion‐containing polyelectrolyte hydrogel with high ionic conductivity for high‐performance flexible and cold‐resistant supercapacitor," Journal of Applied Polymer Science, vol. 137, no. 34, p. 48995, 2020.
[33] D.-W. Kim, B.-K. Oh, and Y.-M. Choi, "Electrochemical performance of lithium-ion polymer cell using gel polymer electrolyte based on acrylonitrile-methyl methacrylate-styrene terpolymer," Solid State Ionics, vol. 123, no. 1-4, pp. 243-249, 1999.
[34] R. E. Cunningham and M. R. Treiber, "Preparation and stress–strain properties of ABA‐type block polymers of styrene and isoprene or butadiene," Journal of Applied Polymer Science, vol. 12, no. 1, pp. 23-34, 1968.
[35] D. Yao, J. Feng, J. Wang, Y. Deng, and C. Wang, "Synthesis of silicon anode binders with ultra-high content of catechol groups and the effect of molecular weight on battery performance," Journal of Power Sources, vol. 463, p. 228188, 2020.
[36] F. H. Du, B. Li, W. Fu, Y. J. Xiong, K. X. Wang, and J. S. Chen, "Surface binding of polypyrrole on porous Silicon hollow nanospheres for Li‐ion battery anodes with high structure Stability," Advanced materials, vol. 26, no. 35, pp. 6145-6150, 2014.
[37] Q. Liu, S. Li, S. Wang, X. Zhang, S. Zhou, Y. Bai, J. Zheng, and X. Lu, "Kinetically determined phase transition from stage II (LiC12) to stage I (LiC6) in a graphite anode for Li-ion batteries," The journal of physical chemistry letters, vol. 9, no. 18, pp. 5567-5573, 2018.
[38] U. Westerhoff, K. Kurbach, F. Lienesch, and M. Kurrat, "Analysis of lithium‐ion battery models based on electrochemical impedance spectroscopy," Energy Technology, vol. 4, no. 12, pp. 1620-1630, 2016.
[39] X. Sun, X. Zhang, W. Liu, K. Wang, C. Li, Z. Li, and Y. Ma, "Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor," Electrochimica Acta, vol. 235, pp. 158-166, 2017.
[40] F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Sero, and J. Bisquert, "Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy," Physical chemistry chemical physics, vol. 13, no. 20, pp. 9083-9118, 2011.

QR CODE