簡易檢索 / 詳目顯示

研究生: 吳宜勳
Yi-Syun Wu
論文名稱: 圓柱狀質子交換膜燃料電池之研發與製作
Study on a cylindrical proton exchange membrane fuel cell
指導教授: 黃佑民
You-Min Huang
口試委員: 王國雄
Kuo-Shong Wang
林榮慶
Zone-Ching Lin
邱源成
Yuang-Cherng Chiou
楊宏智
Hong-Tsu Young
向四海
Su-Hai Hsiang
徐瑞坤
Ray-Quan Hsu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 105
中文關鍵詞: 質子交換膜燃料電池金屬成形有限元素分析圓柱狀燃料電池
外文關鍵詞: proton exchange membrane fuel cell, metal forming, finite element analysis, cylindrical, fuel cell
相關次數: 點閱:305下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

質子交換膜燃料電池具有常溫下操作、快速啟動、無污染及無噪音等優點,為極具潛力的替代性能源之一。然而,目前存在著生產成本、生命週期與水管理等問題,阻礙其商業化之發展。近年來大部分的學者皆針對平板狀結構進行分析與討論,少有研究對於圓柱狀之設計加以探討,而圓柱狀之特色為可省略雙極板元件、可降低製作成本且具有高的體積與重量能量密度等,此優勢適合應用於攜帶式之電子產品。研究中透過有限元素分析氫氣的流場分佈,探討不同流量與不同出口直徑之流速分佈,更進一步了解其與電池效能之關係。利用沖孔、捲曲與引伸等金屬成形製程製作電池之上、下蓋、陽極與陰極電流收集器。電池之陰極採用空氣自然對流進氣之方式以減少一般燃料電池所需之配備。將製作之圓柱狀電池進行不同參數之分析,了解其極化曲線與功率密度的變化,實驗中的參數包括氫氣流量、氫氣溫度、陰極鎖合力、出口直徑、氫氣入口與重力場之夾角等。探討各種參數對電池效能的影響,並找出最佳效能之參數。
研究中所發展之小型圓柱狀電池在室溫下之最大功率密度可達112.8 mW/cm2。在各種不同參數下,得知陰極鎖合力與氫氣溫度對電池效能之影響最大,而出口直徑之變化幾乎完全不影響效能。而在實驗中之最佳參數條件下,可達最大功率密度158.7 mW/cm2。最大功率重量比為107.1 W/kg,最大功率體積比為122.4 mW/ cm3。


Proton exchange membrane fuel cells (PEMFCs) are more and more widely used because of the advantages such as zero emission, low temperature operation and relatively high efficiency. However, the widespread commercialization of PEMFCs remains challenge due to cost, reliability and water management issues. PEMFCs can be divided into planar type and cylindrical type according to the structures. Most previous studies have focused on development and analysis the planar one. Bipolar plates contribute significantly to the high cost and low power density in the planar type. However, these two issues can be improved in the cylindrical type due to elimination of bipolar plates. This study develops a lightweight cylindrical PEMFC cell with free air-breathing for portable electronic device. A computational fluid dynamics (CFD) model is created to analyze the velocity and pressure distribution of anode field. Metal forming processes including deep drawing, piercing and rolling are used to fabricate caps, cathode current collector and anode current collector. The influence of several parameters, clamping force, gravity, flow rate, operation temperature and convection on the performance of fuel cell is discussed. The results show that the clamping force and the operation temperature have significantly influence the performance of fuel cell. Maximum power density of the developed fuel cell is 158.7 mW/cm2. Moreover, maximum gravimetric power density and maximum volumetric power density are 107.1 W/kg and 122.4 mW/ cm3, respectively.

目錄 中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 符號索引 IX 圖表索引 XI 第一章 緒論 1 1.1 前言 1 1.2 質子交換膜燃料電池運作原理 3 1.3 研究動機與目的 7 1.4 文獻回顧 10 1.5 論文之構成 18 第二章 燃料電池基本理論 20 2.1 氫氧燃料電池之理想電位 20 2.2 理想電位與溫度之關係 21 2.3 Nernst方程式 22 2.4 Butler-Volmer方程式 23 2.5過電位 26 2.6 統御方程式 29 第三章 流場之有限元素分析 31 3.1 幾何模型建立 31 3.2 模擬假設條件 32 3.3 模擬之邊界條件 32 3.4 模擬之結果 33 第四章 圓柱狀燃料電池之設計與成形方法 47 4.1 材料的選擇 47 4.2 圓柱狀燃料電池之設計與元件 48 4.3圓柱狀燃料電池之製作與組裝 56 第五章 電性量測結果分析與探討 62 5.1 量測設備與架構 62 5.2極化曲線圖 69 5.3改變陽極入口流量 71 5.4改變進出口直徑比 74 5.5改變陽極入口溫度 77 5.6改變陰極鎖合力 81 5.7改變陽極進氣與重力場之角度 84 5.8陰極主動與被動進氣 87 5.9最佳參數之電池性能 90 第六章 結論與未來展望 94 6.1 結論 94 6.2 未來研究之展望 95 參考文獻 97

1. B. R. Chalamala, Portable electronics and the widening energy gap, Proceedings of the IEEE, Vol. 95, pp. 2106-2107, 2007.
2. M. Koc and S. Mahabunphachai, Feasibility investigations on a novel micro-manufacturing process for fabrication of fuel cell bipolar plates: Internal pressure-assisted embossing of micro-channels with in-die mechanical bonding, Journal of Power Sources, Vol. 172, pp. 725-733, 2007.
3. S. Karimi, N. Fraser, B. Roberts and F. R. Foulkes, A review of metallic bipolar plates for proton exchange membrane fuel cell: materials and fabrication methods, Advances in Materials Science and Engineering, Vol. 2012, pp. 1-23, 2012.
4. R. Taherian, A review of composite and metallic bipolar plates in proton exchange membrane fuel cell: Materials, fabrication, and material selection, Journal of Power Sources, Vol. 265, pp. 370-390, 2014.
5. Y. Liu and L. Hua, Fabrication of metallic bipolar plate for proton exchange membrane fuel cells by rubber pad forming, Journal of Power Sources, Vol. 195, pp. 3529-3535, 2010.
6. S. S. Lim, Y. T. Kim and C. G. Kang, Fabrication of aluminum 1050 micro-channel proton exchange membrane fuel cell bipolar plate using rubber-pad-forming process, The International Journal of Advanced Manufacturing Technology, Vol. 65, pp. 231-238, 2013.
7. S. Mahabunphachai and M. Koc, Fabrication of micro-channel arrays on thin metallic sheet using internal fluid pressure: Investigations on size effects and development of design guidelines, Journal of Power Sources, Vol. 175, pp. 363-371, 2008.
8. J. C. Hung and C. C. Lin, Fabrication of micro-flow channels for metallic bipolar plates by a high-pressure hydroforming apparatus, Journal of Power Sources, Vol. 206, pp. 179-184, 2012.
9. M. B. Osia, S. J. Hosseinipour, M. Bakhshi-Jooybary and A. Gorgi, Forming Metallic Micro-Feature Bipolar Plates for Fuel Cell Using Combined Hydroforming and Stamping Processes, Iranica Journal of Energy & Environment, Vol. 4, pp. 91-98, 2013.
10. G. Palumbo and A. Piccininni, Numerical–experimental investigations on the manufacturing of an aluminium bipolar plate for proton exchange membrane fuel cells by warm hydroforming, The International Journal of Advanced Manufacturing Technology, Vol. 69, pp. 731-742, 2013.
11. J. C. Hung, T. C. Yang and K. C. Li, Studies on the fabrication of metallic bipolar plates-Using micro electrical discharge machining milling, Journal of Power Sources, Vol. 196, pp. 2070-2074, 2011.
12. H. J. Kwon, Y. P. Jeon and C. G. Kang, Effect of progressive forming process and processing variables on the formability of aluminium bipolar plate with microchannel, The International Journal of Advanced Manufacturing Technology, Vol. 64, pp. 681-694, 2013.
13. L. Peng, D. Liu, P. Hu, X. Lai and J. Ni, Fabricaton of metallic bipolar plates for proton exchange membrane fuel cell by flexible forming process-numerical simulations and experiments, Journal of Fuel Cell Science and Technology, Vol. 7, pp. 031009-1-031009-9, 2010.
14. K. H. Lee, C. K. Jin, C. G. Kang, H. Y. Seo and J. D. Kim, Fabrication of titanium bipolar plates by rubber forming process and evaluation characteristics of TiN coated titanium bipolar plates, Fuel Cells, Vol. 15, pp. 170-177, 2015.
15. Y. Fu, G. Lin, M. Hou, B. Wu, Z. Shao and B. Yi, Carbon-based films coated 316L stainless steel as bipolar plate for proton exchange membrane fuel cells, International Journal of Hydrogen Energy, Vol. 34, pp. 405-409, 2009.
16. T. C. Chen and J. M. Ye, Fabrication of micro-channel arrays on thin stainless steel sheets for proton exchange membrane fuel cells using micro-stamping technology, The International Journal of Advanced Manufacturing Technology, Vol. 64, pp. 1365-1372, 2013.
17. F. Arbabi, R. Roshandel and G. Karimi Moghaddam, Numerical modeling of an innovative bipolar plate design based on the leaf venation patterns for PEM fuel cells, International Journal of Engineering, Vol. 25, pp. 177-186, 2012.
18. M. Belali-Owsia, M. Bakhshi-Jooybari, S. J. Hosseinipour and A. H. Gorji, A new process of forming metallic bipolar plates for PEM fuel cell with pin-type pattern, The International Journal of Advanced Manufacturing Technology, Vol. 77, pp. 1281-1293, 2015.
19. A. Kumar and R. G. Reddy, Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells, Journal of Power Sources, Vol. 113, pp. 11-18, 2003.
20. K. S. Choi, The flow-field pattern optimization of the bipolar plate for PEMFC considering the nonlinear material, International Journal of Electrochemical Science, Vol. 10, pp. 2564-2579, 2015.
21. P. A. Garcı´a-Salaberri, M. Vera and R. Zaera, Nonlinear orthotropic model of the inhomogeneous assembly compression of PEM fuel cell gas diffusion layers, International Journal of Hydrogen Energy, Vol. 18, pp. 11856-11870, 2011.
22. X. Lai, D. Liu, L. Peng and J. Ni, A mechanical-electrical finite element method model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells, Journal of Power Sources, Vol. 182, pp. 153-159, 2008.
23. C. Carral and P. Me´le´, A numerical analysis of PEMFC stack assembly through a 3D finite element model, International Journal of Hydrogen Energy, Vol. 39, pp. 4516-4530, 2014.
24. S. J. Lee, C. D. Hsu and C. H. Huang, Analysis of the fuel cell stack assembly pressure, Journal of Power Sources, Vol. 145, pp. 353-361, 2005.
25. C. Y. Wen, H. T. Chang and T. W. Luo, Simulation methodology on analyzing clamping mode for single proton exchange membrane fuel cell, Journal of Mechanics, Vol. 27, pp. 545-558, 2011.
26. B. Sreenivasulu, G. Vasu, V. Dharma Rao and S. V. Naidu, Effect of back pressure and flow geometry on PEM fuel cell performance – An experimental study, International Journal of Applied Science and Engineering, Vol. 11, pp. 1-11, 2013.
27. J. Zhang, C. Song, J. Zhang, R. Baker and L. Zhang, Understanding the effects of backpressure on PEM fuel cell reactions and performance, Journal of Electroanalytical Chemistry, Vol. 688, pp. 130-136, 2013.
28. T. V. Reshetenko, G. Bender, K. Bethune and R. Rocheleau, Systematic study of back pressure and anode stoichiometry effects on spatial PEMFC performance distribution, Electrochimica Acta, Vol. 56, pp. 8700-8710, 2011.
29. M. Amirinejad, S. Rowshanzamir and M. H. Eikani, Effect of operating parameters on performance of a proton exchange membrane fuel cell, Journal of Power Sources, Vol. 161, pp. 872-875, 2006.
30. M. Ji and Z. Wei, A Review of water management in polymer electrolyte membrane fuel cells, Energies, Vol. 2, pp. 1057-1106, 2009.
31. A. Debenjak, M. Gašperin, B. Pregelj, M. A. Kunc, J. Petrovčič and V. Jovan, Detection of flooding and drying inside a PEM fuel cell stack, Journal of Mechanical Engineering, Vol. 59, pp. 56-64, 2013.
32. F. B. Weng, A. Su, C. Y. Hsu and C. Y. Lee, Study of water-flooding behavior in cathode channel of a transparent proton-exchange membrane fuel cell, Journal of Power Sources, Vol. 157, pp. 674-680, 2006.
33. Z. Belkhiri, M. Zeroual, H. B. Moussa and Zitouni, Effect of temperature and water content on the performance of PEM fuel cell, Revue des Energies Renouvelables, Vol. 14, pp. 121-130, 2011.
34. S. Strahl. A. Husar, P. Puleston and J. Riera, Performance improvement by temperature control of an open-cathode PEM fuel cell system, Fuel Cells, Vol. 14, pp. 466-479, 2014.
35. M. Pérez-Page and V. Pérez-Herranz, Effect of the operation and humidification temperatures on the performance of a pem fuel cell stack on dead-end mode. International Journal of Electrochemical Science, Vol. 6, pp. 492-505, 2011.
36. S. S. Hsieh, J. K. Kuo, C. F. Hwang and H. H. Tsai, A novel design and microfabrication for a micro PEMFC, Microsystem Technologies, Vol. 10, pp. 121-126, 2004.
37. A. Su, Y.M. Ferng, W. T. Chen, C. H. Cheng, F. B. Weng and C. Y. Lee, Investigating the transport characteristics and cell performance for a micro PEMFC through the micro sensors and CFD simulations, International Journal of Hydrogen energy, Vol. 37, pp. 11321-11333, 2012.
38. N. Wan, C. Wang and Z. Mao, Titanium substrate based micro-PEMFC operating under ambient conditions, Electrochemistry Communications, Vol. 9, pp. 511-516, 2007.
39. S. S. Hsieh, S. H. Yang and C. L. Feng, Characterization of the operational parameters of a H2/air micro PEMFC with different flow fields by impedance spectroscopy, Journal of Power Sources, Vol. 162, pp. 262-270, 2006.
40. S. S. Hsieh, C. F. Huang, J. K. Kuo, H. H. Tsai and S. H. Yang, SU-8 flow field plates for a micro PEMFC, Journal of Solid State Electrochemistry, Vol. 9, pp. 121-131, 2005.
41. Y. Wang, L. Pham, G. P. S. D. Vasconcellos, and M. Madou, Fabrication and characterization of micro PEM fuel cells using pyrolyzed carbon current collector plates, Journal of Power Sources, Vol. 195, pp. 4796-4803, 2010.
42. R. G Peng, T. Y. Chen, Y. J. Hsu and C. H. Chen, Performance analysis on planar micro PDMS proton exchange membrane fuel cell stack, Journal of the Chinese Society of Mechanical Engineers, Vol. 32, pp. 189-198, 2011.
43. R. G. Peng, C. C. Chung and C. H. Chen, Experimental and numerical studies of micro PEM fuel cell, Acta Mechanica Sinica, Vol. 27, pp. 627-635, 2011.
44. J. Choi, E. S. Lee, J. H. Jang, Y. H. Seo and B. Kim, Development of synthetic jet air blower for air-breathing PEM fuel cell, World Academy of Science, Engineering and Technology, Vol. 56, pp. 31-34, 2009.
45. Y. H. Seo, H. J. Kim, W. K. Jang and B. H. Kim, Development of active breathing micro PEM fuel cell, International Journal of Precision Engineering and Manufacturing-Green Technology, Vol. 1, pp. 101-106, 2014.
46. H. K. Ma and S. H. Huang, Innovative design of an air-breathing proton exchange membrane fuel cell with a piezoelectric device, Journal of Fuel Cell Science and Technology, Vol. 6, pp. 034501-1-034501-6, 2009.
47. K. S. Dhathathreyan, N. Rajalakshmi, K. Jayakumar and S. Pandian, Forced air-breathing PEMFC stacks, International Journal of Electrochemistry, Vol. 2012, pp. 1-7, 2012.
48. F. B. Weng, B. S. Jou, P. H. Chi, A. Su and S. H. Chan, Design, fabrication, and performance analysis of a passive micro-PEM-fuel-cell stack, Journal of Fuel Cell Science and Technology, Vol. 6, pp. 034502-1-034502-7, 2009.s
49. A. P. Sasmito, E. Birgersson, K. W. Lum and A. S. Mujumdar, Computational study of free air-breathing PEM fuel cell: Single cell and stack, ASEAN Engineering Journal, Vol. 2, pp. 78-92, 2012.
50. N. Bussayajarn, H. Ming, K. K. Hoong, W. Y. M. Stephen and C. S. Hwa, Planar air breathing PEMFC with self-humidifying MEA and open cathode geometry design for portable applications, International Journal of Hydrogen Energy, Vol. 34, pp. 7761-7767, 2009.
51. Y. Zhang and R. Pitchumani, Numerical studies on an air-breathing proton exchange membrane (PEM) fuel cell, International Journal of Heat and Mass Transfer, Vol. 50, pp. 4698-4712, 2007.
52. M. A. R. S. Al-Baghdadi, Novel design of a compacted micro-structured air-breathing PEM fuel cell as a power source for mobile phones, International Journal of Energy and Environment, Vol. 1, pp. 555-572, 2010.
53. M. C. Kimble, T. J. Blakley and K. D. Jayne, Spiral-wound PEM fuel cell for portable applications, ECS Transactions, Vol. 3, pp. 1187-1195, 2006.
54. K. J. Green, R. Slee and J. B. Lakeman, The development of lightweight, ambient air breathing, tubular PEM fuel cell, Journal of New Materials for Materials for Electrochemical Systems, Vol. 5, pp. 1-7, 2002.
55. M. S. Yazici, Passive air management for cylindrical cartridge fuel cells, Journal of Power Sources, Vol. 166, pp. 137-142, 2007.
56. K. I. Lee, S. W. Lee, M. S. Park and C. N. Chu, The development of air-breathing proton exchange membrane fuel cell (PEMFC) with a cylindrical configuration, International Journal of Hydrogen Energy, Vol. 35, pp. 11844-11854, 2010.
57. B. Bullecks, R. Rengaswamy, D. Bhattacharyya and G. Campbell, Development of a cylindrical PEM fuel cell, International Journal of Hydrogen Energy, Vol. 36, pp. 713-719, 2011.
58. S. Modekurti, B. Bullecks, D. Bhattacharyya and R. Rengaswamy, Modeling studies of a cylindrical polymer electrolyte membrane fuel cell cathode, Industrial & Engineering Chemistry Research, Vol. 51. Pp. 5003-5010, 2012.
59. J. F. Coursange, A. Hourri and J. Hamelin, Performance comparison between planar and tubular-shaped PEM fuel cells by three-dimensional numerical simulation, Fuel Cells, Vol. 3, pp. 28-36, 2003.
60. M. A.R. S. Al-Baghdadi, Studying the effect of material parameters on cell performance of tubular-shaped PEM fuel cell, Energy Conversion and Management, Vol. 49, pp. 2986-2996, 2008.
61. J. M. Sierra, S. J. Figueroa-Ramı´rez, S. E. Dı´az, J. Vargas, P. J. Sebastian, Numerical evaluation of a PEM fuel cell with conventional flow fields adapted to tubular plates, International Journal of Hydrogen Energy, Vol. 39, pp. 16694-16705, 2014.

QR CODE