簡易檢索 / 詳目顯示

研究生: 柯玉柔
YU-ROU,KO
論文名稱: 鑭和錫共摻雜的硫氧化鋅於光催化氫化偶氮苯的研究
Utilization of La- and Sn- codoped Zn(O,S) for photocatalytic hydrogenation reaction of azobenzene
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 郭東昊
Dong-Hau,Kuo
陳詩芸
Shih-Yun,Chen
薛人愷
Ren-Kae,Shiue
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: PDF95頁
中文關鍵詞: 光觸媒氫化還原偶氮苯苯胺
外文關鍵詞: Photocatalys, hydrogenation reduction, azobenzene, aniline
相關次數: 點閱:237下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文以實驗室自行製備鑭與錫摻雜Zn(O,S)粉體進行偶氮苯的光催化加氫還原反應,所使用的粉體有下列五種10La-Zn(O,S)、10La2.5Sn-Zn(O,S)、10La5Sn-Zn(O,S)、10La10Sn-Zn(O,S)與10Sn-Zn(O,S)。在此探討不同比例鑭與錫共摻雜的Zn(O,S)粉體其還原效率、粉體結構與性質、電性及光學性。於本實驗中,我們以XRD、SEM、TEM、XPS、EPMA、電化學EIS阻抗頻譜、DRS等分析技術來分析粉體;並以UV-Vis、GC-MS、HER來分析反應後液體的組成。
偶氮苯的光催化加氫還原成苯胺的反應中,10La5Sn-Zn(O,S)在含有10%酒精溶液中加氫效果最佳,由GC-MS檢驗其轉成的最終產物為苯胺。此粉體以XRD與TEM檢測結果證實為ZnO與ZnS形成的固溶體,並且用EPMA檢測得知元素均勻分布,再用XPS檢測其元素含量為鋅28.88 at.%、氧43.03 at.%、硫24.24 at.%、鑭1.41 at.%與錫2.44 at.%。此10La5Sn-Zn(O,S)粉體3小時產氫率為826.5 µmol/g,添加偶氮苯時的產氫率為541.1 µmol/g。光學與電性量測發現,能隙值3.33 eV介於ZnO (3.2 eV)和ZnS (4.2 eV)之間,其電荷轉移電阻最低為169.23 Ω;光響應最強的光電流為221 pA。發現此10La5Sn-Zn(O,S)可以裂解N=N雙鍵並且在1小時內完成偶氮苯加氫還原成苯胺的光催化加氫反應。


In this research, the La- and Sn- codoped ZnOS photocatalyst powders at different La and Sn contents powder were prepared in our laboratory for photocatalytic hydrogenation reduction of azobenzene to aniline. There were five kinds of powders prepared: 10La-Zn(O,S), 10La2.5Sn-Zn(O,S), 10La5Sn-Zn(O,S), 10La10Sn-Zn(O,S), and 10Sn-Zn(O,S). Here, the hydrogenation reduction efficiency, powder structure and properties including electrical properties and optical properties of lanthanum- and tin- codoped Zn(O,S) powders were evaluated. In this experiment, we analyzed the powders with XRD, SEM, TEM, XPS, EPMA, electrochemical EIS impedance spectrum, and DRS. UV-Vis, GC-MS, and HER were used to analyze the retained liquid after the hydrogenation reduction of La- and Sn-codoped ZnOS for identifying the product.

中文摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XI 第1章、緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第2章、文獻回顧與原理 5 2.1 偶氮苯簡介 5 2.2 苯胺簡介 6 2.3 氧化鋅與硫化鋅簡介 6 2.4 硫氧化鋅ZN(O,S)固溶體簡介 7 2.5 觸媒原理 11 2.6 自由基簡介 12 2.7 光觸媒材料簡介 12 2.8 光觸媒氧化與還原機制簡介 13 第3章、研究方法與步驟 16 3.1 實驗材料及規格 16 3.2 實驗設備 17 3.2.1 電子天平 18 3.2.2 真空烘箱 18 3.2.3 超音波震盪機 18 3.2.4 離心機 18 3.2.5 減壓濃縮機 18 3.2.6 加熱磁石攪拌器 18 3.2.7 UV紫外光燈管 18 3.3 實驗步驟 19 3.3.1 實驗流程 19 3.3.2 光觸媒粉體製備 20 3.3.3 光觸媒實驗(偶氮苯光催化加氫反應轉變成苯胺) 21 3.3.4 粉體特性量測 22 3.3.5 液體特性量測 22 3.4 分析儀器介紹 23 3.4.1 高功率X光繞射儀 (High Power X-Ray Diffractometer, XRD) 23 3.4.2 高解析度場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FESEM) 25 3.4.3 紫外光、可見光與近紅外光分析儀 (UV-Vis/ NIR/ DRS spectrophotometer) 26 3.4.4 電化學阻抗頻譜法(Electrochemical impedance spectroscopy, EIS) + 光敏反應(Photoreopense) 28 3.4.5 X光光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 30 3.4.6 場發射高解析電子微探儀(Electron Probe X-Ray Microanalyzer, EPMA) 31 3.4.7 氣相色譜質譜儀(Gas chromatography Mass spectrometry, GC-MS) 32 3.4.8 場發射穿透式電子顯微鏡 (Field Emission Gun Transmission Electron Microscopy, FEG-TEM+EDS) 33 3.4.9 螢光光譜儀(Spectrofluorometer,PL) 34 第4章、結果與討論 35 4.1 鑭、錫共摻雜ZN(O,S)光觸媒粉體分析 35 4.1.1 高功率X光繞射儀XRD之結構與結晶性分析 35 4.1.2 高解析度場發射掃描式電子顯微鏡FE-SEM之表面形貌與EDS分析 38 4.1.3 場發射穿透式電子顯微鏡TEM之表面微結構、多晶繞射圖形與d-spacing結構分析 42 4.1.4 場發射高解析電子微探儀EPMA之微區域成份分布分析 44 4.1.5 X光光電子能譜儀XPS之元素之間鍵結能及元素組成分析 47 4.1.6 電化學阻抗頻譜法EIS之導電性分析 50 4.1.7 擴散反射光譜學Diffuse reflectance spectroscopy(DRS)之光學分析 52 4.1.8 光敏反應Photorespone之光敏分析 54 4.2 鑭、錫共摻雜ZN(O,S)光觸媒反應分析 56 4.2.1 紫外光-可見光/近紅外光分析儀UV-Vis之定性分析 56 4.2.2 氣相色譜質譜儀GC-MS之成份分析 64 4.2.3 10La5Sn-Zn(O,S)光觸媒粉體HER分析 66 4.3 光催化氫化反應機制 68 第5章、結論 72 第6章、參考文獻 73

1. J.D. Sutter, J. Berlinger. " Final draft of climate deal formally accepted in paris, CNN. " Cable news network. turner broadcasting system, (2015).
2. W. Fan, Q. Zhang, Y. Wang. "Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion." Physical chemistry chemical physics 15 (2013) 2632-2649.
3. L.S. Nathan, D.G. Nocera. "Powering the planet: Chemical challenges in solar energy utilization." Proceedings of the national academy of sciences 103 (2006) 15729-15735.
4. A. Kudo, Y. Miseki. "Heterogeneous photocatalyst materials for water splitting." Chemical society reviews 38 (2009) 253-278.
5. M.R. Gholipour, C.T Dinh, F. Bélandb, T.O Do. "Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting." Nanoscale 7 (2015) 8187-8208.
6. K. Maeda. "Photocatalytic water splitting using semiconductor particles: history and recent developments." Journal of photochemistry and photobiology C: Photochemistry reviews, 12 (2011) 237-268.
7. B. Gupta, A.A. Melvin, T. Matthews, S. Dash, A.K.Tyagi. "TiO2 modification by gold (Au) for photocatalytic hydrogen (H2) production." Renewable and sustainable energy reviews 58 (2016) 1366-1375.
8. H. Ahmad, S.K. Kamarudin, L.J. Minggu, M. Kassim. "Hydrogen from photo-catalytic water splitting process: A review." Renewable and sustainable energy reviews 43 (2015) 599-610.
9. H. Abdullah, N.S. Gultom, D.-H. Kuo. "A simple one-pot synthesis of a Zn(O,S)/Ga2O3 nanocomposite photocatalyst for hydrogen production and 4-nitrophenol reduction." New journal of chemistry, 41 (2017) 12397-12406.
10. A. Fujishima, K. Honda. "Electrochemical photolysis of water at a semiconductor electrode." Nature 238 (1972) 37-38.
11. Y.M. Chiang, D.P. Birnie III, W.D. Kingery. Physical ceramics: principles for ceramic science and engineering. Wiley, 1996, ISBN: 978-0-471-59873-2.
12. X. Chen, S. Shen, L. Guo, S.S. Mao. "Semiconductor-based photocatalytic hydrogen generation." Chemical reviews 110 (2010) 6503-6570.
13. S. Chen, W. Zhao, W. Liu, H. Zhang, X. Yu, Y.H. Chen. "Preparation, characterization and activity evaluation of p–n junction photocatalyst p-CaFe2O4/n-Ag3VO4 under visible light irradiation." Journal of hazardous materials 172 (2009) 1415-1423.
14. R. Bajaj, M. Sharma, D. Bahadur. "Visible light-driven novel nanocomposite (BiVO4/CuCr2O4) for efficient degradation of organic dye." Dalton transactions 42 (2013) 6736-6744.
15. J. Yan, L. Zhanga, H. Yang, Y. Tang, Z. Lu, S. Guo, Y. Dai, Y. Han, M. Yao. "CuCr2O4/TiO2 heterojunction for photocatalytic H2 evolution under simulated sunlight irradiation." Solar energy 83 (2009) 1534-1539.
16. R. Nakamura, T. Tanaka, Y. Nakato. "Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes." The journal of physical chemistry B 108 (2004) 10617-10620.
17. M. Mrowetz, W. Balcerski, A.J. Colussi, M.R. Hoffmann. "Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination." The journal of physical chemistry B 108 (2004) 17269-17273.
18. Q. Li, Y.W. Li, P. Wu, R. Xie, J.K. Shang. "Palladium oxide nanoparticles on nitrogen‐doped titanium oxide: accelerated photocatalytic disinfection and post‐illumination catalytic “memory”." Advanced materials 20 (2008) 3717-3723.
19. P.A.K. Reddy, P.V.L. Reddy, V.M. Sharm, B. Sriniva, V.D. Kumari, M. Subrahmanyam. "Photocatalytic degradation of isoproturon pesticide on C, N and S doped TiO2." Journal of water resource and protection 2 (2010) 235-244.
20. J.C. Yu, G.S Li, X.C. Wang, X.L. Hu, C.W. Leung, Z.D. Zhang. "An ordered cubic Im3m mesoporous Cr–TiO2 visible light photocatalyst." Chemical communications 25 (2006) 2717-2719.
21. G.S. Li, D.Q. Zhang, J.C. Yu. "Thermally stable ordered mesoporous CeO2/TiO2 visible-light photocatalysts." Physical chemistry chemical physics 11 (2009) 3775-3782.
22. M. Khatamian, M.S. Oskoui, M. Haghighi, M. Darbandi. "Visible light response photocatalytic water splitting over CdS-pillared zirconium–titanium phosphate (ZTP)." International journal of hydrogen energy 35 (2010) 5262-5269.
23. T.C. Dinh, M.H. Pham, Y. Seo, F. Kleitz, T.O. Do. "Design of multicomponent photocatalysts for hydrogen production under visible light using water-soluble titanate nanodisks." Nanoscale 6 (2014) 4819-4829.
24. J. Hou, C. Yang, H. Cheng, Z. Wang, S. Jiao, H. Zhu. "Ternary 3D architectures of CdS QDs/graphene/ZnIn2S4 heterostructures for efficient photocatalytic H2 production." Physical chemistry chemical physics 15 (2013) 15660-15668.
25. Y.X. Pan, H. Zhuang, J. Hong, Z. Fang, H. Liu, B. Liu, Y. Huang, R. Xu. "Cadmium sulfide quantum dots supported on gallium and indium oxide for visible‐light‐driven hydrogen evolution from water." Chemsuschem 7 (2014) 2537-2544.
26. K. Chang, Z. Mei, T. Wang, Q. Kang, S. Ouyang, J. Ye. "MoS2/graphene cocatalyst for efficient photocatalytic H2 evolution under visible light irradiation." ACS nano 8 (2014) 7078-7087.
27. X. Wang, M Liu, Q. Chen, K. Zhang, J. Chen, M, Wang, P. Guo, L. Guo. "Synthesis of CdS/CNTs photocatalysts and study of hydrogen production by photocatalytic water splitting." International journal of hydrogen energy 38 (2013) 13091-13096.
28. L. Wang, Z. Yao, F. Jia, B. Chen, Z.A. Jiang. "A facile synthesis of ZnxCd1− x S/CNTs nanocomposite photocatalyst for H2 production." Dalton transactions 42 (2013) 9976-9981.
29. M. Khatamian, M.S. Oskoui, M. Haghighi. "Photocatalytic hydrogen generation over CdS–metal silicate composites under visible light irradiation." New journal of chemistry 38 (2014) 1684-1693.
30. S. R. Lingampalli, K.G. Ujjal, C.N.R. Rao. "Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1− x ZnxS and ZnO/Pt/CdS1−xSex hybrid nanostructures." Energy & environmental science 6 (2013) 3589-3594.
31. A.A. Lilac, A. Paul. Paul Alivisatos. "Photocatalytic hydrogen production with tunable nanorod heterostructures." The journal of physical chemistry letters 1 (2010) 1051-1054.
32. H. Tada, T. Ishida, A. Takao, S. Ito. "Drastic enhancement of TiO2-photocatalyzed reduction of nitrobenzene by loading Ag clusters." Langmuir 20 (2004) 7898-7900.
33. N.S. Gultom, H. Abdullah, D.-H. Kuo. "Convenient synthesis of Mn-doped Zn(O,S) nanoparticle photocatalyst for 4-nitrophenol reduction." Journal of physics: conference series 1007 (2018) 012061.
34. F. Mahdavi, T.C. Bruton, Y. Li. "Photo induced reduction of nitro compounds on semiconductor particles." Journal of organic chemistry 58 (1993) 744-746.
35. H. Abdullah, D.-H. Kuo. "Utilization of photocatalytic hydrogen evolved (Zn,Sn)(O,S) nanoparticles to reduce 4-nitrophenol to 4-aminophenol." International journal of hydrogen energy 44 (2019) 191-201.
36. N.S. Gultom, H. Abdullah, D.-H. Kuo. "Enhanced photocatalytic hydrogen production of noble-metal free Ni-doped Zn(O,S) in ethanol solution." International journal of hydrogen energy 42 (2017) 25891-25902.
37. N.S. Gultom, H. Abdullah, D.-H. Kuo. "Facile synthesis of cobalt-doped (Zn,Ni)(O,S) as an efficient photocatalyst for hydrogen production." Journal of the energy institute (2018) DOI: 10.1016/j.joei.2018.08.008.
38. H. Abdullah, D.-H. Kuo, and X.Y. Chen. "High efficient noble metal free Zn(O,S) nanoparticles for hydrogen evolution." International journal of hydrogen energy 42 (2017) 5638-5648.
39. A.M. Alexander, J.S.J. Hargreaves. "Alternative catalytic materials: carbides, nitrides, phosphides and amorphous boron alloys." Chemical society reviews 39 (2010) 4388-4401.
40. C. Avelino, C. Patricia, S. Pedro. "A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts." Angewandte chemie international edition 46 (2007) 7266-7269.
41. M. Boronat, P. Concepción, A. Corma, S. González, F. Illas, P. Serna. "A molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: A cooperative effect between gold and the support." Journal of the american chemical society 129 (2007) 16230-16237.
42. A. Corma, P. Serna, P. Concepción, J.J. Calvino. "Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics." Journal of the american chemical society 130 (2008) 8748-8753.
43. A. Corma, P. Serna. "Chemoselective hydrogenation of nitro compounds with supported gold catalysts." Science 313 (2006) 332-334.
44. J. Wang, Z. Yuan, R. Nie, Z. Hou, X. Zheng. "Hydrogenation of nitrobenzene to aniline over silica gel supported nickel catalysts." Industrial & engineering chemistry research 49 (2010) 4664-4669.
45. H. Li, Q. Zhao, Y. Wan, W. Dai, M. Qiao. "Self-assembly of mesoporous Ni–B amorphous alloy catalysts." Journal of catalysis 244 (2006) 251-254.
46. S.P. Lee, Y.W. Chen. "Nitrobenzene hydrogenation on Ni–P, Ni–B and Ni–P–B ultrafine materials." Journal of molecular catalysis A: chemical 152 (2000) 213-223.
47. B. Saha, S. De, S. Dutta. "Recent advancements of replacing existing aniline production process with environmentally friendly one-pot process: an overview." Critical reviews in environmental science and technology 43 (2013) 84-120.
48. H.Y. Jiang, J. Xu, B. "Selective hydrogenation of aromatic compounds using modified iridium nanoparticles." Applied organometallic chemistry 32 (2018) e4260.
49. G. Xiao, P. Li, Y. Zhao, S. Xu, H. Su. "Visible‐light‐driven chemoselective hydrogenation of nitroarenes to anilines in water through graphitic carbon nitride metal‐free photocatalysis." Chemistry–an asian journal 13 (2018) 1950-1955.
50. H. Tada, M. Kubo, Y. Inubushi, S. Ito. "N=N bond cleavage of azobenzene through Pt/TiO2 photocatalytic reduction." Chemical communications 11 (2000) 977-978.
51. Y. Shiraishi, M. Katayama, M. Hashimoto, T. Hirai. "Photocatalytic hydrogenation of azobenzene to hydrazobenzene on cadmium sulfide under visible light irradiation." Chemical communications 54 (2018) 452-455.
52. Y.K. Hsu, Y.C. Chen, Y.G. Lin. "Novel ZnO/Fe2O3 core–shell nanowires for photo electrochemical water splitting." ACS applied materials & interfaces 7 (2015) 14157-14162.
53. K. Ogata, T. Komuro, K. Hama, K. Koike, S. Sasa, M. Inoue, M. Yano. "Characterization of undoped ZnO layers grown by molecular beam epitaxy towards bio sensing devices." Physical status solidi 241 (2004) 616-619.
54. E. Lucas, S. Decker, A. Khaleel, A. Seitz, S. Fultz, A. Ponce, L. Weifeng, C. Corrie, K.J. Klabunde. "Nanocrystalline metal oxides as unique chemical reagents/sorbents." Chemistry–a european journal 7 (2001) 2505-2510.
55. R. Yaparpalvi, S.K. Loyalka, R.V. Tompson. "Production of spherical ZrO2‐Y2O3 and ZnO particles." Journal of biomedical materials research 28 (1994) 1087-1093.
56. K. J. Wedekind, A.E. Hortin, D.H. Baker. "Methodology for assessing zinc bioavailability: efficacy estimates for zinc-methionine, zinc sulfate, and zinc oxide." Journal of animal science 70 (1992) 178-187.
57. J.M. Wu, Y.R. Chen, W.T. Kao. "Ultrafine ZnO nanoparticles/nanowires synthesized on a flexible and transparent substrate: formation, water molecules, and surface defect effects." ACS applied materials & interfaces 6 (2013) 487-494.
58. R. Kumar, S. Anandan, K. Hembram, T.N. Rao. "Efficient ZnO-based visible-light-driven photocatalyst for antibacterial applications."ACS applied materials & interfaces 6 (2014) 13138-13148.
59. A. Kushwaha, M. Aslam. "ZnS shielded ZnO nanowire photo anodes for efficient water splitting." Electrochemical acta 130 (2014) 222-231.
60. Y. Liu, Y. Gu, X. Yan, Z. Kang, S. Lu, Y. Sun, Yue Zhang. "Design of sandwich-structured ZnO/ZnS/Au photo anode for enhanced efficiency of photo electrochemical water splitting." Nano research 8 (2015) 2891-2900.
61. P.H. Chuang, C.C. Lin, R.S. Liu. "Emission-tunable CuInS2/ZnS quantum dots: structure, optical properties, and application in white light-emitting diodes with high color rendering index." ACS applied materials & interfaces 6 (2014) 15379-15387.
62. S. Kim, T. Kim, M. Kang, S.K. Kwak, T.W. Yoo, L.S. Park, I. Yang, S. Hwang, J.E. Lee, S.K. Kim, S.W. Kim. "Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes." Journal of the american chemical society 134 (2012) 3804-3809.
63. R. Xing, Y. Xue, X. Liu, B. Liu, B. Miao, W. Kang, S. Liu. "Mesoporous ZnS hierarchical nanostructures: facile synthesis, growth mechanism and application in gas sensing." CrystEngComm 14 (2012) 8044-8048.
64. X. Fang, Y. Bando, M. Liao, U.K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, D. Golberg." Single‐crystalline ZnS nanobelts as ultraviolet‐light sensors." Advanced materials 21 (2009) 2034-2039.
65. C.P. Björkman, T. Törndahl, D. A. Ras, J. Malmström, J. Kessler, L. Stolt. "Zn (O, S) buffer layers by atomic layer deposition in Cu(In,Ga)Se2 based thin film solar cells: band alignment and sulfur gradient." Journal of applied physics 100 (2006) 044506.
66. A. Grimm, D. Kieven, I. Lauermann, M.C.H.L. Steiner, F. Hergert, R. Schwieger, R. Klenk. "Zn(O,S) layers for chalcopyrite solar cells sputtered from a single target." European physical journal of Photovoltaics 3 (2012) 30302.
67. C. Persson, C.P. Bjorkman, J. Malmstrom, T. Torndahl, M. Edoff. "Strong valence-band offset bowing of ZnO1− xSx enhances p-type nitrogen doping of ZnO-like alloys." Physical review letters 97 (2006) 146403.
68. H.M. Chen, C.K. Chen, R.S. Liu, C.C. Wu, W.S. Chang, K.H.C. hen, T.S. Chan, J. Lee, D. P. Tsai. "A new approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photo anode." Advanced energy materials 1 (2011) 742-747.
69. B.G. Oliver, E.G. Cosgrove, J.H. Carey. "Effect of suspended sediments on the photolysis of organics in water." Environmental science & technology 13 (1979) 1075-1077.
70. 張東憲“奈米光觸媒應用於玻璃表面之自淨功能研究”,國立臺灣科技大學營建工程系研究所,2004。
71. 胡振國譯“半導體元件–物理與技術”,全華圖書公司, 1989。
72. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann. "Environmental applications of semiconductor photo catalysis." Chemical reviews 95 (1995) 69-96.
73. American Public Health Association, Standard Methods for the Examination of Water and Wastewater (16th ed). American Public Health Association: D.C. Washington, (1985) 201-204.
74. T. Miwa, S. Kaneco, H. Katsumata, T. Suzuki, K. Ohta, S.C. Verma, K. Sugihara. "Photocatalytic hydrogen production from aqueous methanol solution with CuO/Al2O3/TiO2 nanocomposite." International journal of hydrogen energy 35 (2010) 6554-6560.
75. H. Abdullah, N.S. Gultom, D.-H. Kuo. "Synthesis and characterization of La-doped Zn(O,S) photocatalyst for green chemical detoxification of 4-nitrophenol." Journal of hazardous materials 363 (2019) 109-118.

QR CODE