簡易檢索 / 詳目顯示

研究生: 阮文安
Van-Yen Nguyen
論文名稱: MVDR BEAMFORMING FOR LEO SATELLITE COMMUNICATIONS
MVDR BEAMFORMING FOR LEO SATELLITE COMMUNICATIONS
指導教授: 劉馨勤
Hsin-Chin Liu
口試委員: 陳永芳
Yang-Fang Chen
張立中
Li-Chung Chang
曾德峰
Der-Feng Tseng
曾恕銘
Shu-Ming Tseng
劉馨勤
Hsin-Chin Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 54
中文關鍵詞: Doppler effectMVDR beamformingantenna arraysatellite communications
外文關鍵詞: Doppler effect, MVDR beamforming, antenna array, satellite communications
相關次數: 點閱:182下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

The speed of a low-earth orbit (LEO) satellites and the large number of LEO satellites flying on the sky is an obstacle for signal transmission and anti-jamming processing at ground stations.
The Doppler effect due to the LEO satellite rapid moving velocity is a nonneglectable
factor for beamforming techniques, which aim to cancel the co-channel interferences (CCI) caused by other simultaneous satellite communications.
In this work, the minimum variance distortionless response (MVDR) beamforming
technique is used at a ground station to mitigate the CCI problem; however, the Doppler effect becomes a serious problem as it affects the steering vector corresponding to thedirection of the target LEO satellite.
To overcome this problem, we take the Doppler effect into account in the steering
vector associated with the LEO satellite, and then substitute the modified steering vector to the gain constraint in a MVDR beamformer.
Simulation results verify that the proposed method effectively overcome the performance degradation problem of the MVDR beamformer at the ground station. The
solution for this problem can be useful for developing a LEO satellite communication
system.


The speed of a low-earth orbit (LEO) satellites and the large number of LEO satellites flying on the sky is an obstacle for signal transmission and anti-jamming processing at ground stations.
The Doppler effect due to the LEO satellite rapid moving velocity is a nonneglectable
factor for beamforming techniques, which aim to cancel the co-channel interferences (CCI) caused by other simultaneous satellite communications.
In this work, the minimum variance distortionless response (MVDR) beamforming
technique is used at a ground station to mitigate the CCI problem; however, the Doppler effect becomes a serious problem as it affects the steering vector corresponding to thedirection of the target LEO satellite.
To overcome this problem, we take the Doppler effect into account in the steering
vector associated with the LEO satellite, and then substitute the modified steering vector to the gain constraint in a MVDR beamformer.
Simulation results verify that the proposed method effectively overcome the performance degradation problem of the MVDR beamformer at the ground station. The
solution for this problem can be useful for developing a LEO satellite communication
system.

Chapter 1 Introduction.........................................................................................................1 1.1 Research motivation...........................................................................................1 1.1.1 Research scope...........................................................................................1 1.1.2 Research motivation and objectives...........................................................2 1.2 Contributions......................................................................................................3 1.3 Thesis Outline ....................................................................................................4 Background and Preliminaries ......................................................................5 2.1 Literature review................................................................................................5 2.2 Satellite Communication....................................................................................6 2.2.1 Introduction................................................................................................6 2.2.2 LEO satellite and applications...................................................................7 2.2.3 Antenna in earth station .............................................................................8 2.2.4 Doppler in Satellite Communication .........................................................9 2.3 Smart Antenna .................................................................................................14 iii 2.3.1 Antenna array in smart antenna ...............................................................14 2.3.2 MVDR beamformer.................................................................................17 2.4 Conclusions......................................................................................................22 The Doppler-Problem-Free Optimal Beamforming LEO Satellite Communication..................................................................................................................23 3.1 Influence of Doppler on MVDR solution at LEO communication..................23 3.2 Optimal MVDR analysis solution....................................................................29 Simulation Results.......................................................................................32 4.1 Research contents and parameters...................................................................32 4.2 Conclusions......................................................................................................36 Experimental Results...................................................................................37 5.1 Experimental scenarios....................................................................................37 Conclusions and Future Research ...............................................................40 6.1 Conclusions......................................................................................................40 6.2 Future work......................................................................................................40 References 41

[1] R. Dennis, Satellite Communications, Fourth Edition (Professional Engineering)
4th Edition: McGraw-Hill Education, 2006.
[2] B. Yang, F. He, J. Jin, H. G. Xiong, and G. H. Xu, "DOA estimation for attitude
determination on communication satellites," Chinese Journal of Aeronautics, vol.
27, pp. 670-677, Jun 2014.
[3] A. Antón, I. García-Rojo, A. Girón, and E. Morales, "Advanced array signal
processing algorithms for DoA estimation of satellites and launchers," in 2014 7th
Advanced Satellite Multimedia Systems Conference and the 13th Signal Processing
for Space Communications Workshop (ASMS/SPSC), 2014, pp. 78-85.
[4] NASA Webpage. Available: https://www.n2yo.com/.
[5] X. Z. W. Elmahy, Z. Lu, W. Liao, "An Orbit Determination Using SGP4 Propagator
and Doppler Shifts for CubeSats," Transactions of Nanjing University of
Aeronautics and Astronautics, vol. 35, pp. 472-482, 2018.
[6] M. N. Thejaswini, M. R. Manjunath, and B. Yesobu, "Intelligent Satellite Tracking
for Antenna Control System," International Journal of Electrical Electronics and
Data Communication, vol. 3, pp. 32-38, 2015.
[7] S. Changeui, J. Jahyuk, K. Daegeun, S. Choi, L. Cheolhoon, C. Chihyun, et al.,
"Implementation of an Antenna Array for Satellite Communications with the
Capability of Canceling Jammers," IEEE Antennas and Propagation Magazine, vol.
55, pp. 32-48, 2013.
[8] W. C. Barott, M. A. Ingram, and P. G. Steffes, "Scan Loss Pattern Synthesis for
Adaptive Array Ground Stations," IEEE Transactions on Aerospace and Electronic
Systems, vol. 46, pp. 1140-1152, Jul 2010.
[9] Q. Luo and S. Gao, "Smart Antennas for Satellite Communications on the move,"
in International Workshop on Antenna Technology: Small Antennas, Innovative
Structures, and Applications (iWAT), Athens, Greece, 2017, pp. 260-263.
[10] A. Alexiou and M. Haardt, "Smart Antenna Technologies for Future Wireless
Systems: Trends and Challenges," IEEE Communications Magazine, vol. 42, pp.
90-97, Sep 2004.
[11] S. Bellofiore, J. Foutz, C. A. Balanis, and A. Spanias, "Smart antennas for wireless communications," in IEEE Antennas and Propagation Society International
Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio
Science Meeting (Cat. No.01CH37229), Boston, MA, USA, USA, 2001, pp. 26-29.
[12] I. Ali, N. Al-Dhahir, and J. E. Hershey, "Doppler Characterization for LEO
Satellites," IEEE Transactions on Communications, vol. 46, pp. 309-313, Mar 1998.
[13] E. B. Zantou, A. Kherras, and A. Addaim, "Orbit Calculation and Doppler
Correction Algorithm in a LEO Satellite Small Ground Terminal," 19th Annual
AIAA/USU, Conference on Small Satellites, pp. 1-8, 2005.
[14] M. M. N. Ayat, "Accurate Doppler Prediction Scheme for Satellite Orbits,"
presented at the 3rd International Conference on Recent Advances in Space
Technologies, 2019.
[15] M. H. You, S. P. Lee, and Y. Han, "Adaptive Compensation Method using the
Prediction Algorithm for the Doppler Frequency Shift in the LEO Mobile Satellite
Communication System," Etri Journal, vol. 22, pp. 32-39, Dec 2000.
[16] M. Katayama, A. Ogawa, and N. Morinaga, "Carrier Synchronization under
Doppler Shift of the Nongeostationary Satellite Communication Systems," in
Singapore ICCSllSlTA '92, Singapore, 1992, pp. 466-470.
[17] M. B. Sidiku, A. O. Agboola, A. Felix, and A. Mohammed, "The Mathematical
Model of Doppler Frequency Shift in Leo at Ku, K and Ka Frequency Bands,"
International Journal of Trend in Research and Development, vol. 4, pp. 156-160,
2017.
[18] S. S. Jeng and H. P. Lin, "Smart Antenna System and Its Application in Low-EarthOrbit Satellite Communication Systems," IEEE Proceedings-Microwaves Antennas
and Propagation, vol. 146, pp. 125-130, Apr 1999.
[19] Wikipedia, Doppler effect. Available: https://en.wikipedia.org/wiki/Doppler_effect.
[20] A. B. Constantine and I. I. Panayiotis, Introduction to Smart Antennas: Morgan &
Claypool, 2007.
[21] O. Popescu, J. S. Harris, and D. C. Popescu, "Designing the Communication SubSystem for Nanosatellite CubeSat Missions: Operational and Implementation
Perspectives," in SoutheastCon 2016, 2016, pp. 1-5.
[22] P. Loannides and C. A. Balanis, "Uniform Circular Arrays for Smart Antennas,"
IEEE Antennas and Propagation Magazine, vol. 47, pp. 192-206, Aug 2005.
[23] B. G. Frank, Smart Antennas with MATLAB. New York, USA: McGraw-Hill
Education, 2015.
[24] A. A. Khabbazibasmenj, S. A. Vorobyov, and A. Hassanien, "Robust Adaptive
Beamforming via Estimating Steering Vector based on Semidefinite Relaxation,"
in 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals,
Systems and Computers, Pacific Grove, CA, USA, 2010, pp. 1102-1106.
[25] A. B. Gershman, "Robust Adaptive Beamforming in Sensor Arrays," AeuInternational Journal of Electronics and Communications, vol. 53, pp. 305-314,
1999.
[26] A. Hassanien, S. A. Vorobyov, and K. M. Wong, "Robust Adaptive Beamforming
Using Sequential Quadratic Programming: An Iterative Solution to the Mismatch
Problem," IEEE Signal Processing Letters, vol. 15, pp. 733-736, 2008.
[27] F. Liu, J. Wu, R. Du, and X. Bai, "Robust adaptive beamforming against the array
pointing error," in 2017 Progress in Electromagnetics Research Symposium - Fall
(PIERS - FALL), Singapore, 2017, pp. 2782-2789.
[28] R. Mallipeddi, J. P. Lie, S. G. Razul, P. N. Suganthan, and C. M. S. See, "Robust
Adaptive Beamforming Based on Covariance Matrix Reconstruction for Look
Direction Mismatch," Progress In Electromagnetics Research Letters, vol. 25, pp.
37-46, 2011.
[29] P. Chen, Y. Yang, Y. Wang, and Y. Ma, "Robust Adaptive Beamforming with
Sensor Position Errors Using Weighted Subspace Fitting-Based Covariance Matrix
Reconstruction," Sensors (Basel), vol. 18, pp. 1476, May 2018.

QR CODE