簡易檢索 / 詳目顯示

研究生: 涂雲從
Yun-tsung Tu
論文名稱: 陣列天線波束寬度及傳播效能優化與平面線性掃描之毫米波天線量測場開發
Optimization of Antenna Array Beam-width and Propagation Performance and Development of Millimeter Wave Antenna Pattern Measurement System Using 2D Plannar Scanner
指導教授: 廖文照
Wen-jiao Liao
口試委員: 楊成發
Chang-fa Yang
黃國威
Guo-wei Huang
蕭宇劭
Yu-shao Hsiao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 68
中文關鍵詞: 維瓦第天線貼片天線陣列天線接收節點毫米波天線場型量測
外文關鍵詞: Vivaldi antenna, patch antenna, antenna array, access point, millimeter wave antenna measurement system
相關次數: 點閱:398下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分別進行了陣列優化與新型量測場開發的研究。第一部分提出一款操作在2-6 GHz的維瓦第天線設計,並以此為單元組成相位控制波束掃描陣列天線。為達到陣列天線輻射特性在各頻率一致,我們模擬不同角度的天線元件排列,並用平面遠場量測系統量測找出相位中心,進一步優化陣列排列方式。非線性排列方式可使天線增益值及3 dB波束寬在不同頻率時能趨近,以具備足夠的指向性與一致的波束範圍。此架構將可適用寬頻操作的波束掃描雷達應用。
    第二部分提出一款應用於物流車及恆溫儲藏箱間之讀取器天線架構及傳輸實驗。讀取器器天線採用雙線性極化貼片天線陣列實現,可依使用需求改變天線數量及位置,達到較高的增益或較高的涵蓋範圍。感測器天線採用Low Profile Dipole型式設計,此天線輻射場型為側邊全向性輻射,使電磁波可以避開高衰減性的貨品,從箱與箱間的空隙進行傳播,確保天線訊號皆能有效的被讀取器天線接收。為驗證傳輸效能,本論文在廂型車中作初步實驗,針對幾組實際的應用情境做分析。實驗驗證了此架構適用於物流車傳播環境,未來將進一步測試此架構於大型貨櫃運輸之應用。
    第三部分提出一個二維線性掃描毫米波天線量測場系統的架構。隨著半導體技術的進步,無線通訊應用已邁入毫米波頻段,也衍伸出天線場型量測的需求。本章說明毫米波頻段天線量測場的性能要求,提出一個針對60 GHz以上,可搭配混波器模組的平面掃描式遠場量測場設計,配合訊號處理演算法,可轉換出毫米波天線的三維場型,該量測架構具有設置成本低與控制簡單的優點。


    Three topics are presented in this thesis. They are relevant to antenna array beam-width performances, antenna propagation optimization, and development of a new millimeter wave antenna measurement system. An Vivaldi antenna design operating from 2 to 6 GHz and serving as an element of a phase array system, was purposed in the first part. In order to reach a consistent radiation pattern over the operation band, simulations of array arrangement was executed. Furthermore, a 2-D far-field antenna measurement system was used to find out the phase center of the element antenna to optimize the array design.
    The second part is about an reader antenna used to sense temperature sensors placed on thermal-isolated containers within a truck's cargo space. The prototype is a reconfigurable dual-linear polarization patch antenna array. One can change the number of antennas or antenna positions to acquire desired gain and coverage. The sensor antenna is a low profile dipole antenna. It is designed to provide omnidirectional pattern on the sides to propagate between containers to avoid lossy food contents. The experiment results demonstrate that this antenna system arrangement is suitable for delivery truck .
    In the third part, an radiation assessment apparatus based on a 2-D scanner, applicable to millimeter wave antennas, was purposed. The antenna stand of the scanner is designed to accommodate large, heavy mixer modules of an E-band network analyzer. Collected data can be transformed to provide antennas’ far-field patterns.

    摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1研究背景與動機 1 1.2 論文組織 2 第二章 寬頻維瓦第天線陣列波束寬度效能優化 3 2.1 前言 3 2.2 單元天線設計 4 2.3 寬頻維瓦第天線效能驗證 6 2.4 非線性排列之維瓦第天線陣列模擬 8 2.4.1外擴式天線陣列排列設計 8 2.4.2單元天線相位中心量測 11 2.4.3 內傾式天線陣列排列設計 14 2.5 應用於洛德曼透鏡與訊號源定向系統之寬頻天線設計 16 2.5.1 簡介 16 2.5.2 改良寬頻維瓦第天線設計與效能 18 2.6 小結 19 第三章 應用於物流車及恆溫儲藏箱體間之天線與傳輸實驗設計 20 3.1 前言 20 3.2 1 × 2貼片天線陣列設計與效能 21 3.3 1 × 4貼片天線陣列效能驗證 28 3.4應用於小型物流車內之傳輸實驗 33 3.5 小結 41 第四章 平面線性掃描毫米波天線量測場 42 4.1 前言 42 4.2 平面二維線性掃瞄之量測程序與訊號處理演算法 42 4.2.1 平面二維線性掃描之量測程序及架構 42 4.2.2 平面二維線性掃描之訊號處理演算法 45 4.3 平面二維線性掃描天線場型量測結果驗證 55 4.4 Ex分量估測法 61 4.5 小結 63 第五章 結論 64 參考文獻 66

    [1] P. J. Gibson, "The Vivaldi aerial," in Proceedings 9th European Microwave Conference, pp. 101-105, 1979.
    [2] K. S. Yngvesson, D. H. Schaubert, T. L. Korzeniowski, E. L. Kollberg, T. Thungren, and J. F. Johansson, "Endfire tapered slot antenna on dielectric substrates," IEEE Trans. Antennas and Propag., vol. 33, no. 12, pp. 1392-1400, Dec. 1985.
    [3] M. Sims, D. E. Lawrence and R. Halladay, "A fully-integrated Vivaldi phase array for seeker applications," in IEEE Antennas and propagation Society International Symposium, vol. 2B, pp. 445-448, Jul. 2005.
    [4] E. I. Muehldorf, "The phase center of horn antennas," IEEE Trans. Antennas and Propag., vol. AP-18, pp. 753-760, Nov. 1970.
    [5] T. A. Milligan, Modern Antenna Design, 2rd ed. Wiley, 2005.
    [6] 江秉杰,使用近場天線之透地雷達研究與使用洛德曼透鏡陣列天線實現之訊號源定向系統, 國立台灣科技大學電機工程研究所, 碩士論文, 民國102年.
    [7] K. R. Carver and J. W. Mink, "Microstrip antenna technology," IEEE Trans. Antennas and Propag., vol. 29, no. 1, pp. 2-24, Jan. 1981.
    [8] A. Adrian and D. H. Schaubert, "Dual aperture-coupled microstrip antenna for dual or circular polarization," Electronics Letters, vol. 23, pp. 1226-1228, 1987.
    [9] E. Wilkinson, "An n-way hybrid power divider," IRE Trans. Microw. Theory and Tech., vol. 8, no. 1, pp. 116-118, Jan. 1960.
    [10] D. M. Pozar, Microwave Engineering, 3rd ed. Wiley, New York, 2005.
    [11] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd ed. Wiley , New York, 1998.
    [12] S. M. Razavizadeh, "High gain dipole elliptic-shaped patch antenna for dual band WLAN2.4/5 GHz applications," Radio and Wireless Symposium (RWS), 2012 IEEE, pp. 275-278, Jan. 2012.
    [13] A. Rahimian and F. Mehran, "RF link budget analysis in urban propagation microcell environment for mobile radio communication systems link planning," Wireless communications and Signal Processing Conference, pp. 1-5, 2011.
    [14] K. T. Herring, J. W. Holloway, D. H. Staelin, D. W. Bliss, "Path-Loss Characteristics of Urban Wireless Channels," IEEE Trans. Antennas and Propag., vol. 58, pp. 171-177, 2010.
    [15] G. J. M. Janssen, R. Prasad, "Propagation measurements in an indoor radio environment at 2.4 GHz, 4.75 GHz and 11.5 GHz," Proc. IEEE VETEC. 92nd, vol. 2, pp. 617-620, May 1992.
    [16] N. N. Rao, Elements of Engineering Electromagnetics, 6th ed, Pearson Education Inc. America, 2004.
    [17] C. J. Hansen, “WiGiG: multi-gigabit wireless communications in the 60 GHz band,” IEEE Wireless Communications, pp. 6–7, Dec. 2011.
    [18] 蘇昱瑩,簡易式天線匹配檢測系統與平面掃描式天線遠場量測場開發, 國立台灣科技大學電機工程研究所, 碩士論文, 民國101年.
    [19] J. A. G. Akkermans, R. van Dijk, and M. H. A. J. Herben, “Millimeter wave antenna measurement,” European. Microwave conference, pp. 83–86, Oct. 2007.
    [20] S. Ranvier, M. Kyro, C. Icheln, C. Luxey, R. Staraj, and P. Vainikainen, “Compact 3-D on wafer radiation pattern measurement system for 60 GHz antennas,” Microwave and optical technology letters, vol. 51, no. 2, pp. 319–324, Feb. 2009.
    [21] T. brockett and Y. Rahmat-Samii, “A novel portable bipolar near-field measurement system for millimeter-wave antennas: construction, development, and verification,” IEEE Trans. Antennas Propag., vol. 50, no. 5, pp. 121–130, Oct. 2008.
    [22] S. L. Smith, J. W. Aecher, G. P. Timms, K. W. Smart, S. J. Barker, S. G. Hay, C. Granet, “A millimeter-wave antenna amplitude and phase measurement system,” IEEE Trans. Antennas Propag., vol. 60, no. 4, pp. 1744-1757, Apr. 2012.
    [23] 施元凱, 多天線系統設計與天線分集量測系統開發, 國立台灣科技大學電機工程研究所, 碩士論文, 民國102年.
    [24] Agilent, “Millimeter-Wave Network Analyzer,” Internet: http://www.home.agilent.com/zh-TW/pd-1349333-pn-E8361C/pna-microwave-network-analyzer?&cc=TW&lc=cht, Device Datasheet.
    [25] Agilent, “Millimeter-Wave Network Analyzer,” Internet: http://www.home.agilent.com/en/pd-231814-pn-N5260A/millimeter-wave-controller?&cc=TW&lc=cht, Device Datasheet.

    QR CODE