簡易檢索 / 詳目顯示

研究生: 黃柏凱
Bo-Kai Huang
論文名稱: 鎳改質二氧化鈦製備及其光催化活性之研究
Study on Preparation of Nickel-Modified Titania and its Photocatalytic Reactivity
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧洋
Young Ku
李元堯
Yuan-Yao Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 84
中文關鍵詞: 光觸媒光沉積法光催化活性
外文關鍵詞: photocalyst, photodeposition mehtod, photocatalytic activity
相關次數: 點閱:216下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用光沉積法、含浸法、溶膠凝膠法,製備不同鎳含量之二氧化鈦光觸媒,並改變不同製備的條件,期望以簡易經濟的方式製備出高活性的光觸媒材料。藉由調整實驗製程之參數來改變光觸媒材料的反應活性,藉此找出最適的鎳摻雜量。
    實驗中主要以光沉積法製備方法為研究重點,針對樣品的物理性質及光催化活性做分析,以找出材料表面特徵與活性的關連性。物理性質以X光繞射(XRD)、電子顯微鏡(TEM、SEM)、反射式紫外可見光譜儀(UV-Vis-DRS)、光激發螢光(PL)、X射線光電子能譜儀(XPS)等儀器,對改質過後的樣品作分析,以觀察改質前後差異。光催化活性則分為氣相與液相反應兩類系統,比較各觸媒之光催化活性。液相反應是以光催化觸媒降解甲基橙水溶液,觀察照射紫外光後觸媒對甲基橙之脫色能力。氣相以光催化降解無機性氮氧化物及有機性乙醛等汙染氣體作為研究的重點。結果顯示以UVC作為沈積光源製備之鎳含量為0.1%時,可以使改質之光觸媒在氮氧化物氧化反應中具有最佳的活性,並可以有效地抑制中間產物的生成。分析其原因為表面具鎳化合物時,其紫外光激發的電子電洞數目會增加,且其亦具有吸引電子電洞分離效果,並且對於氧化中間產物NO2氣體具有優良之親和性,因此,在本研究中可以藉由改質過程而將NOx去除率提高2倍。


    In this work, titania photocatalysts doped with different amount of nickel for the better activity was prepared by photodeposition impregnation, and sol-gel methods. The work focused on the Ni-modification on TiO2 via photodeposition majorly due to the ease of process and good activity of the catalyst. The physical properties and photocatalytic activities of prepared samples were investigated in detail. The results were explained satisfactorily by the interaction between the surface characteristic and photocatalytic activity. In the first part, the physical characterization of prepared catalysts were investigated by x-ray diffractometry (XRD), UV-Vis-diffuse reflectance spectra (UV-Vis), X-ray photoelectron spectra (XPS), turbidimeter, photoluminescence (PL), transmission electron microscopy (TEM). The XPS measurement showed the amount of Ni on TiO2 surface was increased with the concentration of nickel salt in the solution for photodepostion reaction. The turbidity was increased with the increase of amount of Ni on titania. In PL experiment, the photo-excited intensity of 0.1% Ni-doped TiO2 was largest, which was consistent with the photoactalytic activity in the degradation of NO. In the second part, the photocatalytic activity was investigated by the degradation of gaseous NOx and acetaldehyde over the modified titania under UV light irradiation. It depicts that the TiO2 doped with 0.1% Ni prepared by photodeposition under UVC illumination exhibits the highest photocatalytic activity in degradation of gaseous NOx and it can retard the formation of the undesired intermediate, NO2, effectively. The results can attribute to the number of photo-excited electron-hole pairs of titania is increased with deposition of the proper amount of Ni on TiO2 surface. Moreover, the recombination of excited electron and hole is retarded in the presence of Ni due to it traps the electron. Therefore, the photocatalytic degradation rate of NO over TiO2 is improved twice by the Ni-modified process. Futhuremore, the photocatalytic activity of prepared samples were also tested in the degradation of aqueous methyl orange under UV light irradiation. The low activity of Ni-modified TiO2 in the decolorization reaction is because the doped Ni may cause aggregation as shown in the turbidity measurements. The simple process with low cost for preparation of active photocatalyst, 0.1% Ni-doped TiO2, was developed in this work. It exhibits a good potential for the application of air purification.

    摘要 Abstract 誌謝 目錄 圖目錄 第一章 前言 1.1 光觸媒發展簡介 1.2 光觸媒半導體材料 1.3光觸媒之環境應用 第二章 文獻回顧 2.1 二氧化鈦簡介 2.2 光催化反應 2.3 光催化原理 2.4 奈米二氧化鈦粉體製備 2.4.1 工業生產二氧化鈦 2.4.2 研究用製備法 2.4.3 二氧化鈦改質 2.5 氮氧化物(NOx)光催化降解反應 2.6 摻鎳二氧化鈦薄膜之文獻分析 2.7 鎳改質可見光應答型光觸媒 2.8 摻雜不同過渡金屬元素改質二氧化鈦之文獻分析 2.9 鎳改質二氧化鈦粉體之光催化活性探討 2.10 實驗目的 第三章 研究方法 3.1 藥品 3.2 儀器設備 3.3 實驗步驟 3.3.1 樣品製備 3.3.2 光催化反應測試 第四章 結果與討論 4.1 X光繞射分析(XRD) 4.2 電子顯微鏡(EM) 4.3 反射式紫外可見光譜儀(UV-Vis-DRS) 4.4 光激發螢光(photoluminescence, PL) 4.5 X射線光電子能譜儀分析(XPS) 4.6 光催化降解甲基橙脫色實驗 4.7 光催化降解氮氧化物 4.8 光催化降解乙醛 第五章 結論與未來展望 5.1 結論 5.2 未來展望 第六章 參考文獻

    [1] A. Fujishima, TN Rao, DA Tryk, Titanium dioxide photocatalysis, J Photochem Photobiol C, 1, 1 (2000)
    [2] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev., 38, pp. 253–278 (2009)
    [3] O. Carp , C. L. Huisman , A. Reller, Photoinduced reactivity of titanium dioxide , Progress in Solid State Chemistry, 32 , pp. 33-177 (2004)
    [4] 藤嶋昭,橋本和仁,渡部俊也,吳紀聖,圖解光觸媒,世茂出版有限公司,第74-124頁 (2006)
    [5] H. Yamashita, H. Nishiguchi, N. Kamada, M. Anpo, Y. Teraoka, H. Hatano, S. Ehara, K. Kikui, L. Palmisano, Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts, Research on Chemical Intermediates, 20, pp. 815-823 (1994)
    [6] Anonymous in phase diagrams for ceramists figure, The American Ceramic Society, Inc., 76, 4150. (1975)
    [7] 高濂,鄭珊,張青紅,陳憲偉,奈米光觸媒,五南圖書出版公司,第32-135頁 (2004)
    [8] A. L. Linsebigler, Photocatalysis on TiO2 Surfaces: Principles, mechanisms, and selected results, Chem. Rev., 95, pp. 735-758 (1995)
    [9] H. Yu , X. J. Li , S. J. Zheng, W. Xu, Photocatalytic activity of TiO2 thin film non-uniformly doped by Ni, Materials Chemistry and Physics, 97 , pp. 59–63 (2006)
    [10] N. S. Begum, H M F. Ahmed, K R Gunashekar, Effects of Ni doping on photocatalytic activity of TiO2 thin films prepared by liquid phase deposition technique, Bull. Mater. Sci., 31 (5), pp. 747-751 (2008)
    [11] M. Dhayal, S.D. Sharma, C. Kant, K.K. Saini, S.C. Jain, Role of Ni doping in surface carbon removal and photocatalytic activity of nano-structured TiO2 film, Surface Science, 602, pp. 1149–1154 (2008)
    [12] S. D. Sharma, D. Singh, K.K. Saini, C. Kant, Sol–gel-derived super-hydrophilic nickel doped TiO2 film as active photo-catalyst, Applied Catalyst A: General , 314, pp. 40–46 (2006)
    [13] D. Y. Wang , H. C. Lin, C. C. Yen, Influence of metal plasma ion implantation on photo-sensitivity of anatase TiO2 thin films, Thin Solid Films, 515, pp. 1047–1052 (2006)
    [14] X. Zhang , Q. Liu, Visible-light-induced degradation of formaldehyde over titania photocatalyst co-doped with nitrogen and nickel, Applied Surface Science, 254, pp. 4780–4785 (2008)
    [15] R. Khan,T. J. Kim, Preparation and application of visible-light-responsive Ni-doped and SnO2-coupled TiO2 nanocomposite photocatalysts, Journal of Hazardous Materials, 163 (2-3), pp. 1179-1184 (2009)
    [16] J. Wang, S. Uma, K.J. Klabunde, Visible light photocatalysis in transition metal incorporated titania-silica aerogels, Applied Catalyst B: Environmental, 48, pp. 151–154 (2004)
    [17] T. Ohno , N. Murakami, T. Tsubota, H. Nishimura, Development of metal cation compound-loaded S-doped TiO2 photocatalysts having a rutile phase under visible light, Applied Catalyst A: General, 349, pp. 70–75 (2008)
    [18] N. Murakami, T. Chiyoya, T. Tsubota, T. Ohno, Switching redox site of photocatalytic reaction on titanium(IV) oxide particles modified with transition-metal ion controlled by irradiation wavelength, Applied Catalyst A: General, 348, pp. 148–152 (2008)
    [19] D. H. Kim, D. K. Choi, S. J. Kim, K. S. Lee, The effect of phase type on photocatalytic activity in transition metal doped TiO2 nanoparticles, catcom, 9, pp. 654–657 (2008)
    [20] A. Gajovic, K. Furic, N. Tomasic, S. Popovic, Z. Skoko, S. Music, Mechanochemical preparation of nanocrystalline TiO2 powders and their behavior at high temperatures , J. Alloy. Compd., 398, pp. 188-199 (2005)
    [21] S. H. Woo , W. W. Kim, S. J. Kim, C. K. Rhee, Photocatalytic behaviors of transition metal ion doped TiO2 powder synthesized by mechanical alloying, Materials Science and Engineering A, 449–451, pp. 1151–1154 (2007)
    [22] D. Jing, Y. Zhang, L. Guo, Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution, Chemical Physics Letters, 415, pp.74–78 (2005)
    [23] C. Rizhi, D. Yan, X. Weihong and X. Nanping, “The Effect of Titania Structure on Ni/TiO2 Catalysts for p-Nitrophenol Hydrogenation,” Chinese J. Chem. Eng., 14(5), pp. 665-669 (2006)
    [24] Y. H. Tseng, C.S. Kuo, C. H. Huang, Y. Y. Li, P. W. Chou, C. L. Cheng, M. S. Wong, Visible-light-responsive nano-TiO2 with mixed crystal lattice and its photocatalytic activity, Nanotechnology, 17, pp. 2490-2497 (2006).
    [25] 謝嘉民,賴一凡,林永昌,枋志堯,光激發螢光量測的原理、架構及應用,奈米通訊,第十二卷第二期,第28-39頁
    [26] R. Niishiro,H. Kato, A. Kudo, Nickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions, Phys . Chem. Chem. Phys . , 7 , pp. 2241–2245 (2005)
    [27] T. Y. Han, C. F. Wu, C. T. Hsieh, Hydrothermal synthesis and visible light photocatalysis of metal-doped titania nanoparticles, J. Vac. Sci. Technol. B, 25, 2, pp. 430-435 (2007)
    [28] M. Tiana,, W. Shangguan,, J. Yuan, S. Wang, Z. Ouyang, Promotion effect of nanosized Pt, RuO2 and NiOx loading on visible light-driven photocatalysts K4Ce2M10O30 (M =Ta, Nb) for hydrogen evolution from water decomposition, Sci. Tech. of Adv. Materials, 8, pp. 82–88 (2007)
    [29] M. Carrier, N. Perol, J. M. Herrmann, C. Bordes, S. Horikoshi, J. O. Paisse, R. Baudot, C. Guillard, Kinetics and reactional pathway of Imazapyr photocatalytic degradation Influence of pH and metallic ions, Applied Catalysis B: Environmental, 65, pp. 11–20 (2006)
    [30] 黃嘉宏,曾堯宣,黃珧玲,劉淑鈴,光觸媒效能檢驗技術,化工技術,第十四卷第四期,(2006)

    無法下載圖示 全文公開日期 2014/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE