簡易檢索 / 詳目顯示

研究生: 許雅淑
Ya-Shu Xu
論文名稱: LTE-A 網路環境下最大化下鏈無線電資源使用率
Maximizing the Usage of Downlink Radio Resources in LTE-A Networks
指導教授: 馮輝文
Huei-Wen Ferng
口試委員: 葉生正
none
林嘉慶
none
范欽雄
Chin-Shyurng Fahn
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 33
中文關鍵詞: 長期演進技術升級版載波聚合排程貪婪演算法
外文關鍵詞: Long Term Evolution-Advanced, Carrier Aggregation, Greedy Algorithm
相關次數: 點閱:242下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在長期演進技術升級版(Long Term Evolution-Advanced, LTE-A) 環境下,載波聚合為提升系統可供應最大速率的關鍵技術,可讓使用者以聚合多個單元載波來大幅提升傳輸速率。本論文專注於載波聚合技術部分,提出的方法為找尋最小分配的載波數使用量,藉由反覆聚合多個在此時最少可聚合的載波數的載波集合以提升系統的頻寬使用,同時可讓更多的使用者需求被服務到。我們證明了此問題為NP-Hard 問題,並推導了貪婪演算法以實作方法。藉由模擬結果可觀察出,本論文的方法在頻寬的使用與單元載波的使用量上比相近的文獻有更好的效果。


In the Long Term Evolution-Advanced (LTE-A) network, Carrier Aggregation (CA) is a key technique to enhance the total transmission rate by means of aggregating multiple component carriers (CCs). Focusing on CA, a scheme is proposed in this thesis to find the minimum number of allocated carriers through aggregating local minimum allocated carriers repeatedly to improve the usage of system bandwidth so that more service requests can be granted accordingly. We prove that the problem we considered is NP-hard. Therefore, a greedy algorithm is then utilized to find the solution. Via simulations, we show that our scheme works better than a closely related scheme in the literature in terms of bandwidth consumed and number of CCs used.

目錄 論文指導教授推薦書 i 考試委員審定書 ii 中文摘要 iii 英文摘要 iv 目錄 v 表目錄 vii 圖目錄 viii 第一章、序論 1 1.1 前言 1 1.2 研究動機 1 1.3 論文架構 2 第二章、相關研究背景 3 2.1 長期演進技術介紹(Long Term Evolution, LTE) 3 2.2 長期演進技術升級版(Long Term Evolution-Advanced, LTE-A) 介紹 8 2.3 載波聚合排程策略 9 2.4 封包排程演算法 12 2.5 載波排程演算法 13 第三章、最小化載波數使用演算法介紹 15 3.1 問題函式 15 3.2 困難度說明 17 3.2.1 貪婪演算法介紹 18 3.2.2 子模集函數介紹 18 3.2.3 貪婪演算法流程圖 18 3.2.4 MUCC 問題轉換 19 3.3 MUCC 貪婪演算法 20 第四章、模擬環境介紹與結果分析 22 4.1 模擬環境與參數介紹 22 4.1.1 LTE-Sim 簡介 22 4.1.2 LTE-Sim 模擬環境參數設定 22 4.2 模擬結果 26 第五章、總結 29 參考文獻 30 誌謝 33 表目錄 2.1 下鏈物理層參數表。 8 3.1 變數符號描述表。 15 4.1 LTE-Sim 的主要元件說明表。23 4.2 模擬參數設定表。 25 圖目錄 2.1 長期演進技術基本網路架構示意圖。 3 2.2 無線電介面架構示意圖。 5 2.3 分頻雙工示意圖。 6 2.4 分時雙工示意圖。 6 2.5 無線電訊框示意圖。 7 2.6 頻率-時間軸下的無線電資源分割圖(常態循環字首規範)。 7 2.7 頻道頻寬示意圖。 8 2.8 載波聚合示意圖。 9 2.9 使用載波聚合的網路情境圖。 9 2.10 載波聚合下的無線電資源管理結構圖。 10 2.11 頻道品質指標與調變策略對照圖。 11 2.12 聯合載波排程示意圖。 11 2.13 獨立載波排程示意圖。 12 3.1 單元載波-使用者分配示意圖。 16 3.2 背包問題範例圖。17 4.1 協議棧實作示意圖。 23 4.2 單細胞多使用者環境示意圖。 24 4.3 系統存在不同數量使用者下的使用者平均頻寬消耗。 26 4.4 系統存在不同數量使用者下的使用者平均頻寬消耗示意圖。27 4.5 系統存在不同數量使用者下的使用者平均使用單元載波數示意圖。 28

[1] ITU-R, “Requirements related to technical performance for IMT-Advanced radio interface(s),” Tech. Rep., ITU-R M.2134, Nov. 2008.
[2] 3GPP, “Carrier aggregation,” Tech. Rep., 3GPP TR 36.808, July 2013.
[3] ETSI, “LTE; General packet radio service (GPRS) enhancements for evolved
universal terrestrial radio access network (E-UTRAN) access,” Tech. Rep.,
ETSI TS 123.401, April 2013.
[4] D. Niyato and E. Hossain, “Queueing analysis of OFDM/TDMA systems,” in
Proc. IEEE Global Telecommunications Conference, vol. 6, pp. 5–pp, Dec.
2005.
[5] ETSI, “LTE; Evolved universal terrestrial radio access (E-UTRA); Physical channels and modulation,” Tech. Rep., ETSI TS 136.211, April 2010.
[6] H. Lee, S. Vahid, and K. Moessner, “A survey of radio resource management for spectrum aggregation in LTE-advanced,” IEEE Communications Surveys & Tutorials, vol. 16, no. 2, pp. 745–760, Nov. 2013.
[7] ETSI, “LTE; Evolved universal terrestrial radio access (E-UTRA); Physical layer procedures,” Tech. Rep., ETSI TS 136.213, Oct. 2009.
[8] L. Chen, W. Chen, X. Zhang, and D. Yang, “Analysis and simulation for spectrum aggregation in LTE-advanced system,” in Proc. IEEE Vehicular Technology Conference, pp. 1–6, Fall 2009.
[9] L. Zhang, K. Zheng, W. Wang, and L. Huang, “Performance analysis on carrier scheduling schemes in the long-term evolution-advanced system with
carrier aggregation,” IET communications, vol. 5, no. 5, pp. 612–619, March
2011.
[10] Y. Wang, K. Pedersen, T. B. Sorensen, P. E. Mogensen, et al., “Carrier load balancing and packet scheduling for multi-carrier systems,” IEEE Transactions on Wireless Communications, vol. 9, no. 5, pp. 1780–1789, May 2010.
[11] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda, “Downlink
packet scheduling in LTE cellular networks: Key design issues and a survey,”
IEEE Communications Surveys & Tutorials, vol. 15, no. 2, pp. 678–700, June
2013.
[12] S. Sesia, I. Toufik, and M. Baker, LTE : The UMTS Long Term Evolution.
Wiley Online Library, 2009.
[13] Y. Wang, K. Pedersen, P. E. Mogensen, T. B. Sorensen, et al., “Carrier load balancing methods with bursty traffic for LTE-advanced systems,” in Proc. IEEE 20th International Symposium on Personal, Indoor and Mobile Radio
Communications, pp. 22–26, Sept. 2009.
[14] H.-S. Liao, P.-Y. Chen, and W.-T. Chen, “An efficient downlink radio resource allocation with carrier aggregation in LTE-advanced networks,” IEEE Transactions on Mobile Computing, vol. 13, no. 10, pp. 2229–2239, Jan. 2014.
[15] X. Cheng, G. Gupta, and P. Mohapatra, “Joint carrier aggregation and packet scheduling in LTE-advanced networks,” in Proc. IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks
(SECON), pp. 469–477, June 2013.
[16] D. Pisinger, “Algorithms for knapsack problems,” Citeseer, 1995.
[17] S. Martello and P. Toth, Knapsack Problems : Algorithms And Computer
Implementations. John Wiley & Sons, Inc., 1990.
[18] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for maximizing submodular set functions - I,” Mathematical Programming, vol. 14, no. 1, pp. 265–294, Dec. 1978.
[19] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, An Analysis Of
Approximations For Maximizing Submodular Set Functions - II. Springer,
Feb. 1978.
[20] S. Iwata, L. Fleischer, and S. Fujishige, “A combinatorial strongly polynomial algorithm for minimizing submodular functions,” Journal of the ACM (JACM), vol. 48, no. 4, pp. 761–777, July 2001.
[21] A. Krause and D. Golovin, “Submodular function maximization,” Tractability: Practical Approaches to Hard Problems, vol. 3, p. 19, 2012.
[22] Y. Xu, H. Yang, F. Ren, C. Lin, and X. Shen, “Frequency domain packet
scheduling with mimo for 3GPP LTE downlink,” IEEE Transactions on Wireless
Communications, vol. 12, no. 4, pp. 1752–1761, March 2013.
[23] S.-B. Lee, S. Choudhury, A. Khoshnevis, S. Xu, and S. Lu, “Downlink MIMO with frequency-domain packet scheduling for 3GPP LTE,” in Proc. IEEE INFOCOM, pp. 1269–1277, April 2009.
[24] “LTE Simulator.” http://telematics.poliba.it/index.php/en/lte-sim.
[25] G. Piro, L. A. Grieco, G. Boggia, F. Capozzi, and P. Camarda, “Simulating LTE cellular systems : an open-source framework,” IEEE Transactions on Vehicular Technology, vol. 60, no. 2, pp. 498–513, Nov. 2011.
[26] ETSI, “Universal mobile telecommunications system (UMTS); RF system
scenarios,” Tech. Rep., ETSI TR 125.942, June 2002.
[27] W. C. Jakes and D. C. Cox, Microwave Mobile Communications. Wiley-IEEE
Press, 1994.
[28] M. T. Kawser, N. I. B. Hamid, M. N. Hasan, M. S. Alam, and M. M. Rahman, “Downlink SNR to CQI mapping for different multiple antenna techniques in LTE,” International Journal of Information and Electronics Engineering, vol. 2, no. 5, pp. 757–760, Sep. 2012.
[29] E. Dahlman, S. Parkvall, J. Skold, and P. Beming, 3G evolution HSPA and
LTE for mobile broadband. Academic press, 2010.

QR CODE