簡易檢索 / 詳目顯示

研究生: 王子興
Tzu-Hsing Wang
論文名稱: 以cybernetic模式建構Pichia stipitis菌之酒精發酵模式與操作策略分析
Modeling and Operation Strategy Analysis of Pichia stipitis Ethanol Fermentation Using Cybernetic Model
指導教授: 錢義隆
I-Lung Chien
口試委員: 周宜雄
Yi-Shyong Chou
張德明
Der-Ming Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 126
中文關鍵詞: 控制論模式Pichia stipitis發酵
外文關鍵詞: cybernetic model, fermentation, Pichia stipitis
相關次數: 點閱:287下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究利用控制論模式(cybernetic model)模擬Pichia stipitis菌種在葡萄糖和木糖混合溶液下發酵。為了符合批次發酵實驗數據,控制論模式的成長速率形式是使用contois取代原本monod形式。然後使用批次發酵所得的參數來模擬連續式發酵,其結果發現單成分葡萄糖或木糖基質在低稀釋濃度下成長酵素和低成長酵素會互相競爭而有穩定震盪現象,
      本論文亦利用基因演算法(Genetic Algorithm)當作程序搜尋最佳化的工具。在饋料批次程序搜尋不同基質濃度比例和不同體積比例的最佳操作條件使酒精生產速率達到最大值。結果發現75%木糖和25%葡萄糖混合比例溶液的酒精生產速率最大。


    In this research, the cybernetic model is used to simulate the Pichia stipitis fermentation processfor the mixture of glucose and xylose. In order to fit batch experiment data, the growth rate expression of cybernetic model of costois form is used instead of Monod form. The experimental data from batch fermentation process is used to obtain the model parameter. This model is then used to simulate continuous fermentation processes. The result shows the competition between growth enzyme and low-maintenance enzyme will exhibit some stable oscillations in low dilution rate of glucose/xylose substrate.
    The optimization tool used in this research is Genetic Algorithm.This optimization method is used to maximize the ethanol productivity and to find the optimal operation conditions for different substrate conceration ratio and different volume ratio in fed-batch operation. The result shows a mixture with 75% xylose and 25% glucose can obtain maximum ethanol productivity.

    誌謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1-1 引言 1 1-2 文獻回顧 3 1-2.1 雙基質程序 3 1-2.2 Pichia stipitis菌發酵實驗 5 1-2.3控制論模式連續式培養 5 1-2.4 contois 菌體成長模式 6 1-3 研究動機 7 1-4 組織章節 8 第二章 Pichia stipitis數學模式建立 9 2-1 引言 9 2-2 Pichia stipitis 生長模式探討 10 2-2.1 Pichia stipitis 實驗分析 10 2-2.2 Pichia stipitis反應動力式 18 2-2.3 Pichia stipitis 成長速率探討 19 2-3控制論模式(cybernetic model)介紹 24   2-3.1單成分控制論模式 24   2-3.2雙成分控制論模式 28 2-4 參數搜尋 32 2-5 批次發酵模擬結果 38 第三章 連續式發酵程序最佳操作搜尋 45 3-1 引言 45 3-2連續式發酵特點 45 3-3 模擬葡萄糖與木糖連續式發酵 47 3-4 連續式發酵穩定震盪現象(stable oscillations) 54   3-5 棋盤式搜尋連續式最佳條件 57 第四章 饋料批次發酵程序最佳條件操作搜尋 66 4-1引言 66 4-2基因演算法(Gentic Algorithms) 67 4-2.1基因演算法簡介 67 4-2.2基因演算法流程圖 67 4-2.3基因演算法名詞解釋 69 4-3總體積相同下葡萄糖和木糖不同進料濃度比例批次饋料程序之最佳化條件搜尋 72 4-4總體積相同下葡萄糖與木糖不同體積比例進料之批次饋料程序最佳化條件搜尋 85 4-5低葡萄糖濃度之雙基質發酵之饋料批次最佳化條件搜尋 99 第五章 結論 104 參考文獻 106 符號說明 108 附錄1 110 附錄2 112 作者簡介 115

    [中文]
    [1] 林家慶,「以連續式發酵生產PHBV之研究」,大葉大學食品工程研究所碩士論文(2001)
    [2] 施雅月,「基因演算法介紹」,交通大學資訊管理博士班課程教材,2005
    [英文]
    [1] Agbogbo, F.K.,Coward-Kelly, G., Torry-Smith, M., Wenger, K.S., “Fermentation of Glucose/Xylose Mixtures Using Pichia stipitis ”, Bioresource Technology ,100 (8), pp. 2392-2398, 2006
    [2] Aristidou A., Penttila M., “Metabolic Engineering Applications to Renewable Resource Utilization”, Current Opinion in Biotechnology 11 (2), pp. 187-198, 2000
    [3] Constantinides A., Mostoufi N.., “Numerical Methods for Chemical Engineers with MATLAB Applications”, Prentice Hall PTR, 1999
    [4] Contois D.E. “Kinetics of Bacterial Growth: Relationship between Population Density and Specific Growth Rate of Continuous Cultures”, Journal of General Microbiology, 21,pp.40-50, 1959
    [5] Kompala, Dhinakar S., Ramkrishna, Doraiswami, Jansen, Norman B., Tsao, George T., “Investigation of Bacterial Growth on Mixed Substrates:Experimental Evaluation of Cybernetic Models”, Biotechnology and Bioengineering , Biotechnology and Bioengineering, 28 (7), pp. 1044-1055 , 1985
    [6] Baloo, S., Ramkrishna, D., “Metabolic regulation in Bacterial Continuous Cultures: I ,” Biotechnology and Bioengineering 38 (11), pp. 1337-1352 ,1991
    [7] Baloo, S., Ramkrishna, D., “Metabolic Regulation in Bacterial Continuous Cultures::II,” Biotechnology and Bioengineering 38 (11), pp. 1353-1363 , 1991
    [8] Jeffries, T.W., “Engineering yeasts for xylose metabolism”, Current Opinion in Biotechnology 17 (3), pp. 320-326, 2006
    [9] Jones, K.D., Kompala, D.S. , “ Cybernetic model of The Growth Dynamics of Saccharomyces cerevisiae in Batch and Continuous Cultures,” Journal of Biotechnology 71 (1-3), pp. 105-131,1999
    [10] Martin Ruel, S., Comeau, Y., Ginestet, P., Héduit, A., “Modeling Acidogenic and Sulfate-reducing Processes for The Determination of Fermentable Fractions in Wastewater”, Biotechnology and Bioengineering 80 (5), pp. 525-536, 2002
    [11] Monod J., “Recherches sur la croissance des Cultures Bacteriennes.” Herman et Cie, Paris ,1942
    [12] Moosa, S., Nemati, M., Harrison, S.T.L., “A kinetic Study on Anaerobic Reduction of Sulphate,Part I:Effect of Sulphate Concentration”, Chemical Engineering Science 60 (13), pp. 3517-3524, 2005
    [13] Myint, M., Nirmalakhandan, N., “Evaluation of First-order, Second-order, and Surface-limiting Reactions in Anaerobic Hydrolysis of Cattle Manure ”, Environmental Engineering Science 23 (6), pp. 970-980,2006
    [14] Shuler, M.L., Fikret Kargi., “Bioprocess Engineering Basic Concepts,” Prentice-Hall International, Inc., 2001
    [15] Narang, A., Konopka, A., Ramkrishna, D., “Dynamic Analysis of The Cybernetic Model for Diauxic Growth”,Chemical Engineering Science 52 (15), pp. 2567-2578, 1997
    [16] Vavilin, V.A., Rytov, S.V., Lokshina, L.Ya., “A Description of Hydrolysis Kinetics in Anaerobic Degradation of Particulate Organic matter”, Bioresource Technology 56 (2-3), pp. 229-237,1996
    [17] Van Maris, A.J.A., Winkler, A.A., Kuyper, M., De Laat, W.T.A.M., Van Dijken, J.P., Pronk, J.T., “Development of Efficient Xylose Fermentation in Saccharomyces cerevisiae:Xylose Isomerase as a key Component”, Advances in

    QR CODE