簡易檢索 / 詳目顯示

研究生: 王迺詒
Nai-yi Wang
論文名稱: 高濃度同步糖化醱酵一步分餾之木質纖維素
Simultaneous saccharification and fermentation of one-step fractionated lignocellulose for very high gravity ethanol production
指導教授: 李振綱
Cheng-kang Lee
口試委員: 劉懷勝
Hwai-shen Liu
段國仁
Kow-jen Duan
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 92
中文關鍵詞: 一步分餾木質纖維素生質酒精高濃度基質醱酵酒精同步糖化醱酵絲光化
外文關鍵詞: Simultaneous saccharification and fermentation, one-step fractionated lignocellulose, high gravity ethanol production, mercerization, bioethanol
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 木質纖維素在草酸水溶液與2-MTHF雙相溶液中經加熱至140℃可一步分餾出纖維素固體、半纖維素水解液及在有機相之木質素。分餾後所得的纖維素固體其酵素水解速率較低,以85%磷酸溶解再生、5 N NaOH澎潤、離子溶液溶解再生,皆可大幅提升其水解速率,其中以5 N NaOH澎潤3小時前處理最為簡單且經濟的方法。木質纖維素經分餾後可大幅提高固體中纖維素含量,經NaOH前處理後,以纖維酶Accellerase 1500 和酵母菌 Saccharomyces cerevisiae 進行同步糖化醱酵,經批次式饋料可得醱酵酒精濃度76.4 g/L。水相中之木糖則可再經高溫、酸催化脫水成為糠醛等有價值的化學品物質。有機相則可由蒸餾分開2-MTHF和木質素,回收利用2-MTHF。


    One-pot fractionation of cellulose-pulp, soluble hemicelluloses sugars and lignin from waste bamboo chopstick was carried out at mild temperatures of 140℃ by using oxalic acid aqueous solution and a organic phase consisting of bio-based 2-methyl tetrahydrofuran (2-MTHF). Lignin was enriched in the organic phase while most of hemicelluloses was depolymerized into xylose and existed in aqueous phase. The remaining solid phase (P) was mostly cellulose pulp. The cellulose content of the solid phase was enriched from 44% to 73%(w/w) after fractionation. Several pretreatment methods such as IL dissolution, concentrated phosphoric acid dissolution, and NaOH mercerization were applied on P to enhance its enzymatic hydrolysis. NaOH mercerization at 50 oC for 3 h was demonstrated to be a facile pretreatment method which can make P to have similar hydrolysis rate and yield as compared with other methods. The spent NaOH solution can be easily separated from P and recycled for mercerization at least 3 times without affecting its hydrolysis rate and yield. Approximately, cellulose content of 20g/L of P can generate 15.4 g/L glucose after mercerization pretreatment.
    Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was employed to study the adsorption behaviors of Accellerase-1500 on microcrystalline cellulose and cellulose-extracted from bamboo chopsticks through NaOH mercerization pretreatment (P+N). The P+N substrate demonstrated a superior cellulase binding capability to that of P and microcrystalline cellulose. Based on the SDS-PAGE cellulase binding analysis, SEM observation and XRD analysis, the enhanced hydrolysis of P after mercerization pretreatment could attribute to the disrupted crystal structure and increased surface area, which made the cellulose better accessible for enzymatic hydrolysis.
    Saccharomyces cerevisiae was employed for simultaneous saccharification and fermentation (SSF) of P+N substrate for ethanol production. P+N substrate of 230g/L was employed for SSF and 76.4g /L of ethanol was obtained after 3 day with 82.5%cellulose conversion rate.

    目錄 中文摘要... I Abstract…………………………………………………………………II 致謝…………………………………………………………………….III 目錄…….………………………………………………………………IV 圖目錄…………… IX 表目錄….…………………………… ……………………………… XIII 第一章 緒論 1 1-1 研究背景 1 1-2研究內容簡介 3 第二章 文獻回顧 4 2.1木質纖維素之化學組成及結構 4 2.1.1纖維素化學組成及結構 6 2.1.2半纖維素化學組成及結構 7 2.1.3 木質素化學組成及結構 7 2.2纖維素之型態 8 2.3 纖維酶介紹 11 2.4 影響纖維素酶水解纖維素因子 13 2.5 二氧化碳對水熱法的影響 14 2.6壓力鍋兩相一次萃取 14 草酸催化纖維素的化學機制 15 2.7木質纖維素溶解前處理法 15 2.7.1離子溶液(ionic liquid) 15 離子液體溶解纖維素機制 18 2.7.2 濃磷酸 19 2.7.3 鹼處理(Mercerization) 21 2.8生質酒精 23 2.8.1酵母菌醱酵生產酒精 23 2.8.2 Very High Gravity (VHG) 酒精醱酵 23 2.8.3 同步糖化醱酵 26 第三章 實驗材料與方法 27 3.1實驗流程 27 3.2實驗材料 29 3.2.1菌株及來源 29 3.2.2 纖維水解酵素 29 3.3實驗藥品 29 3.3.1培養基 31 3.3.1.1 高濃度葡萄糖(YPHD )液態 31 3.3.1.2 YP 液態培養基 31 3.3.1.3 10x YP 液態培養基 32 3.3.2檸檬酸緩衝溶液配置 32 3.3.3 DNS溶液配置 33 3.3.4離子溶液之製備 33 3.4 實驗設備 34 3.5實驗步驟 36 3.5.1 竹筷屑(木質纖維素)之製備 36 3.5.2 一鍋兩相分餾 36 3.5.2.1草酸對兩相分餾的影響 37 3.5.3乾燥對木質纖維素水解之影響 38 3.5.4經壓力鍋後之木質纖維素磷酸前處理 38 3.5.5經壓力鍋後之木質纖維素氫氧化鈉鹼處理 39 3.5.6 微晶纖維素、木質纖維素離子溶液前處理 39 3.5.7溫度及時間對絲光化的影響 39 3.5.8 纖維水解酵素水解糖化 40 3.5.9饋料高葡萄糖濃度液態培養基培養酵母菌 40 3.5.10饋料壓力鍋經絲光化後之木質纖維素(SSF) 41 3.5.11批次過壓力鍋經絲光化後之木質纖維素(SSF) 41 3.5.12微晶纖維素氫氧化鈉鹼處理 42 3.5.13批次微晶纖維素同步糖化醱酵(SSF) 42 3.5.14批次絲光化後之微晶纖維素同步糖化醱酵(SSF) 43 3.6分析方法 43 3.6.1 組成份分析 43 3.6.2 DNS 還原糖測定法 46 3.6.3纖維素醱酵酒精轉化率計算 47 3.6.4 XRD實驗與結晶度計算 47 3.6.5 SDS PAGE 分析纖維水解酵素 48 3.6.5.1 樣品製備實驗 48 3.6.5.2蛋白質電泳(SDS-PAGE)分析 48 3.6.7 氣相層析儀(GC)分析酒精濃度 50 第四章 結果與討論 51 4.1組成份分析 51 4.2草酸對一鍋三相分餾木質纖維素的影響 54 4.3乾燥對纖維素糖化的影響 55 第一組 : 乾燥對分餾後木質纖維素糖化的影響 56 第二組 : 乾燥對磷酸處理分餾後木質纖維素糖化的影響 57 4.4前處理方法對木質纖維素糖化之影響 58 4.4.1不同前處理樣品之外觀及電子顯微鏡 59 4.4.2纖維素之結晶度可由式4.1計算出 63 4.4.3不同前處理對酵素糖化的影響 64 4.5鹼液回收再利用的可行性 67 4.6 NaOH前處理找最適條件 69 SEM分析 69 XRD分析 70 酵素水解糖化分析 71 4.7 微晶纖維素I型與II型結晶結構對SSF的影響 72 4.7.1以SDS-PAGE 分析纖維水解酵素吸附纖維素 72 4.7.2以SEM分析絲光化對纖維素的影響 74 4.7.3以XRD分析NaOH處理(絲光化)對纖維素的影響 76 4.7.4NaOH處理對高基質濃度同步糖化醱酵酒精的影響 78 4.8高濃度酒精醱酵 82 4.9 批次和饋料分餾木質纖維素對高基質濃度SSF的影響 85 第五章 結論與建議 87 5.1 結論 87 5.2建議 88 參考文獻 ……………………………………………………………….89

    Bai F.W., Anderson W.A., Moo-Young M., 2008. Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances, 26:89 – 105
    Boopathy, R., 1998. Biological treatment of swine waste using
    anaerobic baffled reactors. Bioresour. Technol. 64, 1–6.
    Chen, Y., G. Li, et al. (2011). "Mn/ZSM-5 participation in the degradation of cellulose under phosphoric acid media." Polymer Degradation and Stability 96(5): 863-869.
    Cheung, S.W., Anderson, B.C., 1997. Laboratory investigation of
    ethanol production from municipal primary wastewater. Bioresour.
    Technol. 59, 81–96.
    Dadi A.P., Varanasi S., Schall C.A., 2006. Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnology and Bioengineering , 95:904 – 910
    Den Haan R., Rose S.H., Lynd L.R., van Zyl W.H., 2007. Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metabolic Engineering, 9:87 – 94
    Dewes, T., H€unsche, E., 1998. Composition and Microbial degradability in the soil of farmyard manure from ecologically-managed farms. Biol. Agric. Hortic. 16, 251–268.
    Government, U. S. (2012). Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP), General Books LLC.
    Government, U. S. (2011). Ssf Experimental Protocols: Lignocellulosic Biomass Hydrolysis and Fermentation, General Books LLC.
    Graenacher C., Cellulose solution (1934). US patent 1, 943, 176.
    Wilkes and Zaworotko, 1992
    Hayashi J., Kon H., Takai M., Hatano M. and Nozawa T.
    1989. The Structures of Cellulose. ACS, Washington, DC,Chapter 7, pp. 135–150.
    Hearle,I.(1963)."Fine structure of fibers and crystalline polymers.1.Finged fibrils structure,"J.Appl.Polym.Sci.7,1175-1192
    Kamiya, N., Y. Matsushita, et al. (2008). "Enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media." Biotechnology Letters 30(6): 1037-1040.
    K.K.Y. Wong, K.F. Deverell, K.L. Mackie, T.A. Clark, L.A.Donaldson, The relationship between fiber porosity and cellulose digestibility in steam-exploded Pinus radiata, Biotechnol. Bioeng. 31 (1988) 447–456.
    Klemm, D. et al. (1998) Comprehensive cellulose chemistry vol. 1. Weinheim, Wiley-VCH.
    Lee, J. (1997). "Biological conversion of lignocellulosic biomass to ethanol." Journal of Biotechnology 56(1): 1-24.
    Lee, J.-W., R. C. L. B. Rodrigues, et al. (2010). "The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation." Bioresource Technology 101(12): 4379-4385.
    MA Ding, JIANG Feng, BAO Xinhe et al.(2009) Acid Ionic Liquid Catalyzed Hydrolysis of Cellulose
    Mansfield S.D., Mooney C., Saddler J.N., 1999. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnology Progress, 15:804 – 816
    Mariko Ago, Takashi Endo,Takahiro Hirotsu(2004). Crystalline transformation of native cellulose from cellulose I to cellulose ID polymorph by a ball-milling method with a specific amount of water
    Miyazawa, T. and T. Funazukuri (2005). "Polysaccharide Hydrolysis Accelerated by Adding Carbon Dioxide under Hydrothermal Conditions." Biotechnology Progress 21(6): 1782-1785.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladish, M.,2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686.
    Moxley, G., Z. Zhu, et al. (2008). "Efficient Sugar Release by the Cellulose Solvent-Based Lignocellulose Fractionation Technology and Enzymatic Cellulose Hydrolysis." Journal of Agricultural and Food Chemistry 56(17): 7885-7890.
    Mussatto, S.I., Dragone, G., Guimarães, P.M.R., Silva, J.P., Carneiro, L.M., Roberto, I.C., Vicente, A., Domingues, L., Teixeira, J.A., 2010. Technological trends, global market, and challenges of bio-ethanol production, Biotechnology Advances, 28:817 – 830
    Newman,R.H.(1999)."Estimation of lateral dimensions of celluliose crystallites using 13C NMR signal strength,"Solid State Nuclear Magnetic Resonance 15,21-29
    Okano, T. and A. Sarko (1985). "Mercerization of cellulose. II. Alkali–cellulose intermediates and a possible mercerization mechanism." Journal of Applied Polymer Science 30(1): 325-332.
    Othmer, K. (1991) Cellulose. Encyclopedia of chemical technology.
    Pradeep Puligundla(2011) Very high gravity (VHG) ethanolic brewing and fermentation: a research update
    Reddy, L. V. A., and O. V. S. Reddy, (2006). "Rapid and enhanced production of ethanol in very high gravity (VHG) sugar fermentation by Saccharomyces cerevisiae: Role of finger millet (Eleusine coracana L.) flour," Process Biochem., vol. 41, pp. 726-729.
    Reshamwala, S., Shawky, B.T., Dale, B.E., 1995. Ethanol production
    from enzymatic hydrolysates of AFEX-treated coastal Bermuda
    grass and switchgrass. Appl. Biochem. Biotechnol. 51/52, 43–55.
    Sun, N., H. Rodriguez, et al. (2011). "Where are ionic liquid strategies most suited in the pursuit of chemicals and energy from lignocellulosic biomass?" Chemical Communications 47(5): 1405-1421.
    Swatloski R.P., Spear S.K., Holbrey J.D., Rogers R.D., 2002. Dissolution of cellulose with ionic liquids. Journal of the American Chemical Society, 124:4974 – 4975
    Thomas K.C., Hynes S.H., Jones A.M., Ingledew W.M., 1993. Production of fuel alcohol from wheat by VHG technology:effect of sugar concentration and fermentation. Applied Biochemistry and Biotechnology, 43:211 – 216
    Tu M., Zhang X., Kurabi A., Gilkes N., Mabee W., Saddler J., 2006. Immobilizatiom of β-glucosidase on Eupergit C for lignocellulose hydrolysis. Biotechnology Letters, 28:151 – 156
    vom Stein, T., P. M. Grande, et al. (2011). "From biomass to feedstock: one-step fractionation of lignocellulose components by the selective organic acid-catalyzed depolymerization of hemicellulose in a biphasic system." Green Chemistry 13(7): 1772-1777.
    Wada, M., M. Ike, et al. (2010). "Enzymatic hydrolysis of cellulose I is greatly accelerated via its conversion to the cellulose II hydrate form." Polymer Degradation and Stability 95(4): 543-548.
    Wakelyn et al. (2007) Cotton fiber chemistry and technology. Boca Raton, Taylor & Francis group.
    Yang, F., L. Li, et al. (2010). "Enhancement of enzymatic in situ saccharification of cellulose in aqueous-ionic liquid media by ultrasonic intensification." Carbohydrate Polymers 81(2): 311-316.
    Zhang, J., J. Zhang, et al. (2009). "Dissolution of Microcrystalline Cellulose in Phosphoric Acid—Molecular Changes and Kinetics." Molecules 14(12): 5027-5041.
    Zhang, S., F.-X. Li, et al. (2010). "Dissolution behaviour and solubility of cellulose in NaOH complex solution." Carbohydrate Polymers 81(3): 668-674.
    Zhang, Y. H. P., J. Cui, et al. (2006). "A Transition from Cellulose Swelling to Cellulose Dissolution by o-Phosphoric Acid:  Evidence from Enzymatic Hydrolysis and Supramolecular Structure." Biomacromolecules 7(2): 644-648.
    Zhang Y.H.P., Lynd L.R., 2004. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems. Biotechnology and Bioengineering, 88:797 – 824
    Zhao, D., H. Li, et al. (2012). "Dissolution of cellulose in phosphate-based ionic liquids." Carbohydrate Polymers 87(2): 1490-1494.
    王健家, 2007. 國立中央大學, 生命科學系

    無法下載圖示 全文公開日期 2017/08/03 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE