簡易檢索 / 詳目顯示

研究生: 黃壬宏
Ren-Hung Huang
論文名稱: 應用合併單元於微電網保護管理系統之研究
Apply Merging Unit in Protection Management Systems for Microgrid
指導教授: 辜志承
Jyh-Cherng Gu
口試委員: 楊明達
Ming-Ta Yang
陳坤隆
Kun-Long Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 156
中文關鍵詞: 合併單元IEC 61850微電網保護群組設定時-頻域分析高阻抗故障
外文關鍵詞: merging unit, IEC 61850, protection management system, setting group, time-frequency transform, high-impedance fault
相關次數: 點閱:557下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

微電網係指由分散式電源、儲能設備、交/直流負載、電力轉換器組成之區域型電網,其根據與市電端之併連形式可將運轉狀態分為併網模式與孤島模式。由於運轉模式與再生能源間歇性供電量之因素導致微電網電力潮流及故障電流大小與方向不為單一性,使得傳統電網之保護方式已無法滿足微電網之需求。

本文建立一套適用於微電網以SCADA為基礎之保護管理系統(PMS),其中整合了合併單元(MU)與智慧型電子裝置(IED),PMS採用IEC 61850通訊協定以實現資料高速傳輸與系統適應性保護,同時具備低阻抗故障保護與高阻抗故障保護之能力。於低阻抗故障保護策略中,透過MU將微電網各節點之電壓、電流及開關狀態等資訊回傳至SCADA,PMS經由取得之資訊執行拓撲分析、IED群組歸屬判斷及其方向性過電流保護設定,並回傳結果給各IED以達適應性保護之目的;於高阻抗故障保護策略中,亦透過MU傳回微電網各節點具時間標記之取樣電流值,由PMS執行取樣電流之時-頻轉換,並透過統計步驟運算高阻抗故障判斷指標,以達微電網高阻抗故障偵測與保護之目的。

本文以核研所微電網作為示範場域,透過Matlab/Simulink軟體建立微電網系統模型,模擬不同運轉情形下微電網保護管理系統(PMS)之應變能力。結果顯示PMS在不同微電網運轉情況下皆能順利偵測並排除故障,達到微電網全面性保護之目的。


Microgrid is a regional power grid composed of distributed generators (DGs), energy storage devices, AC/DC loads, and power converters. According to the interconnection with the utility, the microgrid can be operated in grid-connected mode and island mode. However, magnitudes and directions of power flows or fault currents in the microgrid may change accordingly since the intermittent characteristics and the operating modes of renewable energy. Therefore, traditional overcurrent protection schemes no more meet the protection requirements of the microgrid.

This thesis setups a SCADA-based protection management system (PMS) for the microgrid that integrates merging unit (MU) and intelligent electronic devices (IEDs). The IEC 61850 protocol is introduced to implement the high-speed data communication and the adaptive protection. The short circuit protection of the microgrid will focus on the ability of low-impedance fault protection and high-impedance fault protection. In the low impedance fault case, the information (such as voltages, currents for fault detection and circuit breaker status for topology analysis) are sampled by the MU, and then be transmitted to the SCADA platform via IEC 61850. Then, PMS in the platform performs the group assignment and relay setting of each IED. In the high-impedance fault protection strategy, the currents sampled by the MU with time stamp are transmit to the PMS. Then, PMS performs the time frequency transform of sampled currents and calculates the index of high impedance fault.

The microgrid of Institute of Nuclear Energy Research is used as a case study and is modeled by MATLAB/Simulink. In the simulation, several typical cases are carried out to test the fault detection capability of the PMS. The simulation results show that the PMS’s performance is satisfactory. Regardless of whether the short-circuit fault is low-impedance or high-impedance, the microgrid is fully protected.

中文摘要 IV ABSTRACT VI 誌謝 VIII 目錄 X 圖目錄 XIV 表目錄 XVIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 國內外相關研究 2 1.3 研究方法 3 1.4 論文架構 4 第二章 微電網發展現況 7 2.1 前言 7 2.2 國外微電網案例 7 2.2.1 美國 7 2.2.2 歐盟 11 2.2.3 韓國與日本 14 2.2.4 中國 16 2.3 國內微電網案例 20 2.3.1 台電綜合研究所微電網 20 2.3.2 核能研究所微電網 22 2.4 微電網故障保護策略與挑戰 24 2.4.1 低阻抗故障保護技術 24 2.4.2 高阻抗故障保護技術 29 2.4.3 微電網保護技術總結與改善 32 2.4.4 微電網故障保護之挑戰 33 2.5 本章小結 35 第三章 微電網保護管理系統與通訊標準 37 3.1 前言 37 3.2 微電網保護管理系統架構 37 3.2.1 SCADA 38 3.2.2 智慧型電子裝置(IED) 40 3.2.3 合併單元(MU) 41 3.3 IEC 61850通訊協定 44 3.3.1 資料模型與邏輯節點 45 3.3.2 抽象通訊服務介面(ACSI) 47 3.3.3 特定通訊服務映射(SCSM) 49 3.3.4 製造訊息規範(MMS) 50 3.3.5 通用物件導向變電所事件(GOOSE) 52 3.3.6 取樣資料(Sampled Values) 56 3.4 微電網保護管理系統建置 58 3.4.1 低阻抗故障保護機制 58 3.4.2 高阻抗故障保護機制 60 3.5 本章小結 61 第四章 應用合併單元於微電網故障偵測方法 63 4.1 前言 63 4.2 核研所微電網系統架構 63 4.3 接地形式與故障偵測之關係 67 4.4 低阻抗故障偵測 69 4.4.1 微電網拓撲偵測 69 4.4.2 IED保護參數設定 73 4.4.3 IED保護群組設定 75 4.4.4 GOOSE保護協調 76 4.5 高阻抗故障偵測 78 4.5.1 希爾伯特-黃轉換 79 4.5.2 高阻抗故障特性 84 4.5.3 故障偵測 87 4.6 本章小結 94 第五章 微電網保護模擬與分析 95 5.1 前言 95 5.2 模擬情境規劃 95 5.3 情境模擬結果與分析 97 5.3.1 情境1 97 5.3.2 情境2 103 5.3.3 情境3.1 106 5.3.4 情境3.2 108 5.3.5 情境3.3 117 5.4 本章小結 120 第六章 結論與未來研究方向 121 6.1 結論 121 6.2 未來研究方向 122 參考文獻 125 附錄A 高阻抗故障資料庫 133

[1] R. Tiwari, R. K. Singh, and N. K. Choudhary, “Optimal coordination of dual setting directional over current relays in microgrid with different standard relay characteristics,” in Proc. 2020 IEEE 9th Power India International Conference (PIICON), Sonepat, India, Mar. 2020.
[2] A. K. Sahoo, “Protection of microgrid through coordinated directional over-current relays.” in Proc. Global Humanitarian Technology Conference, pp. 129-134, Trivandrum, India, Sept. 2014.
[3] T. S. Aghdam, H. K. Karegar, and H. H. Zeineldin, “Variable tripping time differential protection for microgrids considering DG stability,” IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 2407-2415, May 2019.
[4] T. S. Ustun, C. Ozansoy, and A. Zayegh, “Differential protection of microgrids with central protection unit support,” in Proc. IEEE 2013 Tencon -Spring, pp. 15-19, Sydney, Australia, Apr. 2013.
[5] H. Lin, K. Sun, Z. H. Tan, C. Liu, J. M. Guerrero, and J. C. Vasquez, “Adaptive protection combined with machine learning for microgrids,” IET Generation Transmission & Distribution, vol. 13, no. 6, pp. 770-779, Jan. 2019.
[6] A. Arunan, T. Sirojan, J. Ravishankar, and E. Ambikairajah, “Realtime adaptive differential feature-based protection scheme for isolated microgrids using edge computing,” IEEE Systems Journal, vol. 15, no. 1, pp. 1318-1328, Mar. 2021.
[7] D. Gutierrez-Rojas, P. H. J. Nardelli, G. Mendes, and P. Popovski, “Review of the state of the art on adaptive protection for microgrids based on communications,” IEEE Transactions on Industrial Informatics, vol. 17, no. 3, pp. 1539-1552, Mar. 2021.
[8] D. K. Dash, T. Biswal, and S. C. Swain, “Optimum relaying scheme of high impedance fault detection in micro-grid,” in Proc. 2020 National Conference on Emerging Trends on Sustainable Technology and Engineering Applications (NCETSTEA), Durgapur, India, Feb. 2020.
[9] M. Biswal, S. Ghore, O. P. Malik and R. C. Bansal, "Development of Time-Frequency Based Approach to Detect High Impedance Fault in an Inverter Interfaced Distribution System," IEEE Transactions on Power Delivery, 2021.
[10] A. Gururani, S. R. Mohanty, J. C. Mohanta, “Microgrid protection using Hilbert–Huang transform based-differential scheme.” IET Gener. Transm. Distrib., 2016, Vol. 10, Iss. 15, pp. 3707–3716, 2016.
[11] S. Kar, S. R. Samantaray, “Time-frequency transform-based differential scheme for microgrid protection.” IET Gener. Transm. Distrib., 2014, Vol. 8, Iss. 2, pp. 310–320, 2014.
[12] M. Higginson and P. Pabst, "Design and Implementation of an IEC 61850 GOOSE Based Protection Scheme for an Islanded Power System," 2020 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), pp. 1-4, 2020.
[13] T. Y. Wong, C. Shum, W. H. Lau, S. H. Chung, K. F. Tsang and C. F. Tse, "Modeling and co-simulation of IEC61850-based microgrid protection," 2016 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 582-587, 2016.
[14] E. Alegria, A. Ma, O. Idrees, “CERTS MICROGRID DEMONSTRATION WITH LARGE-SCALE ENERGY STORAGE AND RENEWABLES AT SANTA RITA JAIL”, May 2014.
[15] M. Shahidehpour, “Microgrids for enhancing the economics, reliability, and resilience of smart cities – An IIT experience”, 2014 Smart Grid Conference, May 2014.
[16] L. Che, M. E. Khodayar, M. Shahidehpour, “Adaptive Protection System for Microgrids: Protection practices of a functional microgrid system.”, IEEE Electrification Magazine, Vol. 2, No. 1, pp. 66-80, March 2014.
[17] H. Wilms, D. Mildt, M. Cupelli, A. Monti, P. Kjellen, T. Fischer, D. Panic, M. Hirst, E. Scionti, S. Schwarz, P. Kessler, L. Hernandez, “Microgrid Field Trials in Sweden: Expanding the Electric Infrastructure in the Village of Simris”, IEEE Electrification Magazine, December 2018.
[18] H. Laaksonen, D. Ishchenko, and A. Oudalov “Adaptive Protection and Microgrid Control Design for Hailuoto Island”, May 2014.
[19] Jinho Lee, Ph.D. Packaged S/W Platform Research Team, “A consideration of off-grid Micro-grids”, April 2017.
[20] K. Hirose, "Behavior of the Sendai Microgrid during and after the 311 Great East Japan Disaster," Intelec 2013; 35th International Telecommunications Energy Conference, SMART POWER AND EFFICIENCY, 2013, pp. 1-6.
[21] Hiroshi Irie, “Sendai Microgrid - Introduction and Use Case”, Mitsubishi Research Institute,July 2012
[22] Keiichi Hirose, James T. Reilly , Hiroshi Irie, “New Energy and Industrial Technology Development Organization”, March 2013
[23] 蘇劍,吳鳴,劉海濤,「蒙東陳巴爾虎旗微電網工程研究」 中國電力科學研究院,北京市,2015年1月。
[24] Mao Meiqin, Ding Ming, Su Jianhui, Liuchen Chang, Sun Min,Zhang Guorong“Testbed for microgrid with multi-energy Generators”, 2008 Canadian Conference on Electrical and Computer Engineering, July 2008
[25] 楊金石,台電智慧電網的推動與應用,台電綜合研究所,2011年。
[26] 台灣電力公司,微電網試驗場之研製,2011年。
[27] 左峻德、林法正,台灣智慧電網技術產業介紹,台灣智慧型電網產業協會,2014年4月。
[28] 核能研究所,獨立型微電網計畫,2014年11月。
[29] 張永瑞,獨立型微電網系統技術發展與應用,2015年台灣智慧電網技術研討會,2015年10月15日。
[30] H. Nikkhajoei and R. H. Lasseter, “Microgrid Fault Protection Based on Symmetrical and Differential Current Components”, Public Interest Energy Research Program (PIER), Final Project Report Appendix P, Lawrence Berkeley National Laboratory, December, 2006.
[31] Y. Paras, M. Prabal Reddy, E. Shyamnath and M. Biswal, "An Integrated High Impedance Fault Detection Approach for Renewable Penetrated Distribution Network," 2020 IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), pp. 1-5, 2020.
[32] P. P. Barker, and R. W. De Mello, “Determining the Impact of Distributed Generation on Power Systems: Part 1 - Radial Distribution Systems,” in Proc. IEEE Power Engineering Society Summer Meeting, pp. 1645-1656, Seattle, 16-20 July, 2000.
[33] A. Oudalov, L. Milani, E. Ragaini, and A. Fidigatti, “Sample Implementation of Adaptive Protection for Low Voltage Networks”, PAC World Magazine, June, 2012.
[34] Arcteq Relays, AQ-F215 Feeder Protection IEDInstruction Manual, December,2017.
[35] J. Pascal and F. Zurfluh. “Sensor Interface Suitable for IEC 60044-7 and 8 Metering Accuracy Class 0.1 and Protection Class 5P,” in Proc. 2013 IEEE International Symposium on Industrial Electronics (ISIE), pp.1-4, May, 2013.
[36] 陳南鳴,陳坤隆,陳彥儒,楊政和,黃昭榕,「電子式互感器應用於本公司智慧型變電所之可行性研究」,完成報告,台電綜合研究所,2014年5月。
[37] ABB,2014電子式互感器應用於台電智慧型變電所之可行性研討會演講報告,台電綜研所,2014年5月。
[38] 蔡岱陵 (2017)。整合風機於智慧型變電所自動化之研究。碩士學位論文,國立台灣科技大學電機工程所,台北市。
[39] 鐘心勇 (2016)。應用IED群組設定功能於微電網故障後重構之保護管理系統。碩士學位論文,國立台灣科技大學電機工程所,台北市。
[40] IEC 57 (2011). IEC 61850-7-1 edition 2.0, Communication networks and systems for power utility automation Part 7-1:Basic communication structure Principles and models, p. 70.
[41] IEC 57 (2011). IEC 61850-8-1 edition 2.0, Communication Networks and Systems for power utility automation Part 8-1: Specific Communication Service Mapping (SCSM) Mappings to MMS (ISO/IEC 9506-1 and ISO/IEC 9506-2) and to ISO/IEC 8802-3, p. 22.
[42] Info Tech Wojciech E. Kozlowski and Marcin Pazik (2019, Oct.), IEC 61850 standard:Communication networks and systems for power utility automation. Training material, p.244
[43] 王德文 (2008)。基於 MMS 的 ACSI 基本信息模型獲取方法。電力系統自動化期刊,第32卷,第22期,56-60頁。
[44] 黃彥霖 (2011)。應用以IEC 61850為基礎之IED於智慧型電網之保護。碩士學位論文,國立台灣科技大學電機工程所,台北市。
[45] 徐林辰 (2020)。應用IEC 61850於微電網動態卸載技術之研究。碩士學位論文,國立台灣科技大學電機工程所,台北市。
[46] ISO/IEC 8825-1:1998 Information technology-Abstract Syntax Notation One(ASN.1)-Part 1:Specification of Basic Encoding Rules(BER),Canonical Encoding Rules(CER)and Distinguished Encoding Rules(DER).
[47] J. D. GLOVER, M. S. SARMA, T. J. OVERBYE, POWER SYSTEM ANALYSIS AND DESIGN(FIFTH EDITION SI). United States of America:Cengage Learning, 2011.
[48] 李宏任 (2000)。實用保護電驛(修訂版)。全華圖書股份有限公司,新北市。
[49] T. S. Ustun, “Design and Development of a Communication-Assisted Microgrid Protection System,” PhD Thesis, School of Engineering and Science, Victoria University, September, 2013.
[50] D. Turcotte and F. Katiraei, “Fault Contribution of Grid-Connected Inverters,” in Proc. IEEE Electrical Power & Energy Conference, pp. 1-5, Montreal, 22-23 October, 2009.
[51] 顏佑 (2019)。應用集群分析技術於微電網調適保護之研究。碩士學位論文,國立台灣科技大學電機工程所,台北市。
[52] Jyh-Cherng Gu, Chun-Hung Liu, Jing-Min Wang, Ming-Ta Yang, “Using IEC 61850 GOOSE messages in microgrid protection,” Int Trans Electr Energ Syst. 2019;29:e12122, 2019.
[53] 楊明達 (2006)。應用小波轉換及神經網路於配線線路高阻抗故障偵測之研究。博士學位論文,國立台灣科技大學電機工程所,台北市。
[54] N. E. Huang , et al, “The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis.” in Proc. Royal Society London. A, 454, pp. 903–995, 1998.
[55] S. Biswal, M. Biswal and O. P. Malik, "Hilbert Huang Transform Based Online Differential Relay Algorithm for a Shunt-Compensated Transmission Line," in IEEE Transactions on Power Delivery, vol. 33, no. 6, pp. 2803-2811, Dec. 2018.
[56] 黃聖凱 (2013)。實現以IEC 61850通訊為基礎之微電網保護系統。碩士學位論文,國立台灣科技大學電機工程所,台北市。
[57] 陳仁傑 (2011)。希爾伯特黃變換(HHT)於變轉速之齒輪故障診斷之應用。碩士學位論文,國立中央大學機械工程學系,桃園市。
[58] N. E. Huang , S. S. P. Shen , Hilbert-Huang Transform and Its Applications(2nd ed Vol. 16).Taipei, Taiwan: World Scientific Publishing Company, 2014
[59] J. Tengdin, et al, “High Impedance Fault Detection Technology,”Report of IEEE Power System Relay Committee Working Group D15,pp. 1-12, March 1996.
[60] J. R. Macedo, J. W. Resende, C. A. Bissochi Jr, Daniel Carvalho, Fernando C. Castro, “Proposition of an interharmonic-based methodology for high-impedance fault detection in distribution systems” IET Generation, Transmission & Distribution, Volume 9,Issue 16, November 2015, pp.2593-2601
[61] Y. Sheng and S. M. Rovnyak, “Decision Tree-Based Methodology for High Impedance Fault Detection,” IEEE Transactions on Power Delivery, pp. 533-536, April 2004.
[62] 黃子哲 (2016)。應用小波轉換與類神經網路於架空配電饋線高阻抗故障故障之偵測。碩士學位論文,國立台灣科技大學電機工程所,台北市。

無法下載圖示 全文公開日期 2024/07/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE