簡易檢索 / 詳目顯示

研究生: 范昌源
Chang-Yuan Fan
論文名稱: 前方腰椎椎間骨融合術之椎籠最佳位置與不同後方固定結構之生物力學分析
Biomechanical Analyses of the Optimum Cage Position and Different Posterior Fixation Constructs for ALIF Surgery
指導教授: 趙振綱
Ching-Kong Chao
趙國華
Kuo-Hua Chao
口試委員: 孫瑞昇
Jui-Sheng Sun
林晉
Jinn Lin
黃榮芳
Rong-Fung Huang
徐慶琪
Ching-Chi Hsu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 138
中文關鍵詞: 生物力學測試有限元素法腰椎骨融合術椎籠位置椎弓根螺絲固定小面關節固定
外文關鍵詞: Biomechanical test, Finite element analysis, Lumbar fusion, Cage position, Pedicle screw fixation, Facet screw fixation
相關次數: 點閱:243下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前方腰椎椎間骨融合術(ALIF)已被廣泛的使用於治療椎間盤的疾病,其常用的手術方式為以一對椎籠替代退化的椎間盤,若僅使用椎籠時易發生手術環節的不穩定,需要加入後方固定結構予以增加強度,而後方固定技術也慢慢的由傷害性較大的椎弓根螺絲固定術發展到手術容易且傷害性小的小面關節固定術,但小面關節固定術的穩定度一直備受爭議,有鑑於此,在單層ALIF中,本研究嘗試找出最佳的椎籠擺放位置,以增加前方支撐結構的強度,提高小面關節固定術的可用性,而在雙層ALIF中,本研究則針對五種後方固定結構進行分析與討論,評估四種固定器是否可以替代椎弓根螺絲的可能性。
    本研究建立三維的腰椎有限元素模型,將其應用於單層(L4/L5)與雙層(L3/L4,L4/L5)ALIF的模擬,在分析椎籠最佳位置的研究中,田口方法被用來規劃有限元素分析模型的組合,其中考慮三個三水準的控制因子:椎籠前後位置、椎籠間距離與兩椎籠間的角夾型式,兩個兩水準的雜訊因子: 軸向壓力的大小與鬆質骨的強度,因此L9直角表被使用於實驗設計,ANOVA分析則使用於求得各因子的貢獻度,而最佳的椎籠位置定義為能夠提供手術環節最大的穩定度,最後利用求得的最佳的椎籠位置,進行生物力學實驗的評估。在雙層ALIF中比較五種後方固定結構在六種負載下的力學特性,因此本研究建立三種椎弓根螺絲加圓桿的固定結構與兩種小面關節固定結構的有限元素模型,以軸向位移、角位移、L4椎體的前位移量、後方固定器總應變能與L4椎體的總應變能作為評估後方固定結構強度的依據。
    根據有限元素分析與生物力學實驗的結果,本研究發現椎籠放置的位置會明顯的影響ALIF的穩定性,而最好的椎籠擺放方式為:(a)椎籠置於前方的椎間區域;(b)增大兩椎籠間的距離;(c)兩椎籠間以發散角度擺放,而且以(a)點為優先考量。本研究所建議的椎籠放置方式可以避開端板上最脆弱的中間區域、可放置大量的移植骨於易骨融合的中間與後方區域、椎籠不易後退至椎孔中、在四種力矩負載下具有良好的穩定度與減少後方固定器失效的可能性。
    在雙層ALIF中,本研究不建議省略在中間椎體的椎弓根螺絲的手術方式,因為就算加入後方橫桿也無助於抵抗中間椎體可能的移動。兩種小面關節固定結構在側曲負載時,不但手術環節有大的角位移,而且螺絲也可能有較大的變形發生,此提高了固定結構失效的可能性,因此本研究不建議小面關節固定術應用於雙層ALIF中,在五種後方固定結構中,三節椎體皆使用椎弓根螺絲加桿的固定方式能夠提供最佳的穩定度。
    本論文之研究成果可提供骨科醫師在骨融合手術時植入椎籠位置的參考,也提供在多層ALIF時選用後方固定器的依據。


    Anterior Lumbar Interbody Fusion (ALIF) has been widely used to treat internal disc degeneration. Several biomechanical studies, however, have demonstrated that stand-alone ALIF cages could not provide enough stability for the fusion segment. Therefore, additional posterior instrumentation has been used to increase the stability for the stand-alone ALIF. The development of the posterior fixation, from traditional pedicle screw fixation (PSR) and translaminar facet screw fixation (TLFS) to transfacet pedicle screw fixation (TFPS), has achieved less injury and a simpler procedure. However, the stability of the low-profile fixation is still questionable, especially during cyclic loading. The purpose of the present study, for single-level ALIF, is to investigate the optimum cage position and orientation to increase the strength of anterior support and this may enable the TFPS to be used with greater confidence. For two-level ALIF, the aim of this research was to assess the biomechanical behavior of each fixation construct immediately after surgery and to discuss the relationship between out finite element results and the current literature.
    A three –dimensional finite element models have been developed to simulate the single (L4/l5) and two-level (L3/L4 and L4/L5) ALIF. Taguchi method and the FEM of the single-level ALIF were used to evaluate the optimized placement of the cages, after that those results were verified by the biomechanical testing. The FEM of two-level ALIF was used to evaluate the initial biomechanical behavior of five types of posterior fixation devices under six loading conditions. These fixation constructs included a three-level pedicle screw and rod, a two-level translaminar facet screw, a two-level transfacet pedicle screw, a bisegmental pedicle screw and rod, and a bisegmental pedicle screw and rod with cross-linking.
    From the results of the FEA and Taguchi method, we suggest that the optimal cage positioning has anterior and widely bilateral placement and a diverging angle between the two cages. The results show that the optimum cage position simultaneously contributes to a stronger support of the anterior column and lowers the risk of TFPS loosening and these findings were similar to the results of biomechanical testing. After biomechanical testing, the more anterior placement of the cages shows to provid more stability than the other setting.
    The results of this study demonstrate that the three-level pedicle screw and rod provide the best biomechanical stability compared to the other four types of posterior fixation constructs. Both two-level facet screw fixation constructs showed unfavorable loading in lateral bending. For the construct of the three-level pedicle screw and rod, the middle-segment pedicle screw should not be omitted even though a cross-link is used. The two-level ALIF models with cages and posterior fixation constructs that we developed can be used to evaluate the initial biomechanical performance of a wide variety of posterior fixation devices prior to surgery.
    The results of this dissertation could be use to guide surgical technique for placement of interbody cage devices in ALIF surgery and help surgeons in selecting posterior instrumentation for multisegment ALIF fusion.

    中文摘要 英文摘要 誌 謝 目錄 圖表索引 第一章 緒論 1.1 研究背景、動機與目的 1.2 脊椎之解剖學構造 1.3 ALIF手術之介紹 1.4 文獻回顧 1.4.1 探討椎籠位置之相關文獻 1.4.2 比較不同後方固定器的穩定度之相關文獻 1.5 本文架構 第二章 腰椎有限元素模型建立 2.1 3D腰椎模型之建立 2.1.1 L1-L5腰椎模型的重建 2.1.2 調整腰椎模型的尺寸 2.1.3 依材料性質分割腰椎模型 2.2 有限元素法之介紹 2.3 腰椎之有限元素模型 第三章 ALIF手術之椎籠放置的最佳位置分析 3.1 田口參數化分析與有限元素分析 3.1.1 有限元素分析模型 3.1.2 田口方法分析 3.1.3 結果 3.2 生物力學實驗 3.2.1 材料與方法 3.2.2 結果 3.3 討論 3.3.1 有限元素分析與田口方法 3.3.2 生物力學實驗 第四章 雙層ALIF時不同後方固定結構之生物力學比較 4.1 有限元素模型 4.1.1 雙層ALIF與五種不同後方固定結構之模型的建立 4.1.2 有限元素模擬 4.1.3 收斂性與敏感度分析(convergence and sensitivity analysis) 4.2 結果 4.2.1 收斂性與敏感度分析 4.2.2 軸向位移 4.2.3 L3與L5椎體之間的角位移 4.2.4 L4椎體向前移動的位移量 4.2.5 後方固定器的總應變能 4.2.6 L4椎體的總應變能 4.3 討論 4.3.1 收斂性與敏感度分析 4.3.2 軸向位移 4.3.3 L3與L5椎體之間的角位移 4.3.4 L4椎體向前移動的位移量 4.3.5 後方固定器的總應變能 4.3.6 L4椎體的總應變能 4.3.7 綜合討論 4.3.8 有限元素模型的優點與限制 第五章 結論與未來展望 5.1 結論 5.2 未來展望

    [1] Mayer, H. M., “The ALIF Concept,” Eur Spine J, Vol. 9, pp. S35-S43 (2000).
    [2] Zdeblick, T. A., and David, S. M., “A Prospective Comparison of Surgical Approach for Anterior L4-L5 Fusion: Laparoscopic Versus Mini Anterior Lumbar Interbody Fusion,” Spine, Vol. 25, No. 20, pp. 2682-2687 (2000).
    [3] Phillips, F. M., Cunningham, B., Carandang, G., Ghanayem, A. J., Voronov, L., Havey, R. M., and Patwardhan, A. G., “Effect of Supplemental Translaminar Facet Screw Fixation on the Stability of Stand-Alone Anterior Lumbar Interbody Fusion Cages under Physiologic Compressive Preloads,” Spine, Vol. 29, No. 16, pp. 1737-1736 (2004).
    [4] Tsantrizos, A., Andreou, A., Aebi, M., and Steffen, T., “Biomechanical Stability of Five Stand-Alone Anterior Lumbar Interbody Fusion Constructs,” Eur Spine J, Vol. 9, pp. 14-22 (2000).
    [5] Beutler, W. J., and Peppelman, W. C., “Anterior Lumbar Fusion with Paired Bak Standard and Paired Bak Proximity Cages: Subsidence Incidence, Subsidence Factors, and Clinical Outcome,” The Spine Journal, Vol. 3, pp. 289-293 (2003).
    [6] Beaubine, B. P., Derincek, A., Lew, W. D., and Wood, K. B., “In Vitro, Biomechanical Comparison of an Anterior Lumbar Interbody Fusion with an Anteriorly Placed, Low-Profile Lumbar Plate and Posteriorly Placed Pedicle Screws or Translaminar Screws,” Spine, Vol. 30, pp. 1846-1851 (2005).
    [7] Kandziora, F., Schleicher, P., Scholz, M., Pflugmacher, R., Eindorf, T., Haas, N. P., and Pavlov, P. W., “Biomechanical Testing of the Lumbar Facet Interference Screw,” Spine, Vol. 30, No. 2, pp. E34-E39 (2005).
    [8] Eskander, M., Brooks, D., Ordway, N., Dale, E., and Connolly, P., “Analysis of Pedicle and Translaminar Facet Fixation in a Multisegment Interbody Fusion Model,” Spine, Vol. 32, No. 7, pp. E230-E235 (2007).
    [9] Patwardhan, A. G., Carandang, G., Ghanayem, A. J., Havey, R. M., Cunningham, B., Voronov, L. I., and Phillips, F. M., “Compressive Preload Improves the Stability of Anterior Lumbar Interbody Fusion Cage Constructs,” J Bone Joint Surg Am, Vol. 85, pp. 1749-1756 (2003).
    [10] Beaubien, B. P., Mehbod, A. A., Kallemeier, P. M., Lew, W. D., Buttermann, G. R., Transfeldt, E. E., and Wood, K. B., “Posterior Augmentation of an Anterior Lumbar Interbody Fusion: Minimally Invasive Fixation Versus Pedicle Screws in Vitro,” Spine, Vol. 29, No. 19, pp. E406-E412 (2004).
    [11] Kozak, J. A., Heilman, A. E., and O'Brien, J. P., “Anterior Lumbar Fusion Options: Technique and Graft Materials,” Clin Orthop, Vol. 300, pp. 45-41 (1994).
    [12] Pavlov, P. W., Spruit, M., Havinga, M., Anderson, P. G., Limbeek, J. v., and Jacobs, W. C. H., “Anterior Lumbar Interbody Fusion with Threaded Fusion Cages and Autologous Bone Grafts,” Eur Spine J, Vol. 9, pp. 224-229 (2000).
    [13] Janssen, M. E., Lam, C., and Beckham, R., “Outcomes of Allogenic Cages in Anterior and Posterior Lumbar Interobdy Fusion,” Eur Spine J, Vol. 10, pp. S158-S168 (2001).
    [14] Oxland, T. R., Hoffer, Z., Nydegger, T., Rathonyi, G. C., and Nolte, L. P., “A Comparative Biomechanical Investigation of Anterior Lumbar Interbody Cages: Central and Bilateral Approaches,” J Bone Joint Surg Am, Vol. 82, pp. 383-393 (2000).
    [15] Jang, J. S., Lee, S. H., and Lim, S. R., “Guide Device for Percutaneous Placement of Translaminar Facet Screws after Anterior Lmbar Interbody Fusion: Technical Note,” J Neurosurg (Spine 1), Vol. 98, pp. 100-103 (2003).
    [16] Kim, S. M., Lim, T. J., Paterno, J., and Kim, D. H., “A Biomechanical Comparison of Supplementary Posterior Translaminar Facet and Transfacetopedicular Screw Fixation after Anterior Lumbar Interbody Fusion,” J Neurosurg (Spine 1), Vol. 1, pp. 101-107 (2004).
    [17] Choi, J. Y., and Sung, K. H., “Subsidence after Anterior Lumbar Interbody Fusion Using Paired Stand-Alone Rectangular Cages,” Eur Spine J, Vol. 15, pp. 16-22 (2006).
    [18] Labrom, R. D., Tan, J. S., Reilly, C. W., Tredwell, S. J., Fisher, C. G., and Oxland, T. R., “The Effect of Interbody Cage Positioning on Lumbosacral Vertebral Endplate Failure in Compression,” Spine, Vol. 30, pp. E556-E561 (2005).
    [19] Palm, W. J., Rosenberg, W. S., and Keaveny, T. M., “Load Transfer Mechanisms in Cylindrical Interbody Cage Constructs,” Spine, Vol. 27, No. 19, pp. 2101-2107 (2002).
    [20] Tan, J. S., Bailey, C. S., Dvorak, M. F., Fisher, C. G., and Oxland, T. R., “Interbody Device Shape and Size Are Important to Strengthen the Vertebra-Implant Interface,” Spine, Vol. 30, No. 6, pp. 638-644 (2005).
    [21] Lowe, T. G., Hashim, S., Wilson, L. A., O'Brien, M. F., Smith, D. A., Diekmann, M. J., and Trommeter, J., “A Biomechanical Study of Regional Endplate Strength and Cage Morphology as It Relates to Structural Interbody Support,” Spine, Vol. 29, No. 21, pp. 2389-2394 (2004).
    [22] Ferrara, L. A., Secor, J. L., Jin, B. H., Wakefield, A., Inceoglu, S., and Benzel, E. C., “A Biomechanical Comparison of Facet Screw Fixation and Pedicle Screw Fixation : Effects of Short-Term and Long-Term Repetitive Cycling,” Spine, Vol. 28, No. 12, pp. 1226-1234 (2003).
    [23] Tuli, J., Tuli, S., Eichler, M. E., and Woodard, E. J., “A Comparison of Long-Term Outcomes of Translaminar Facet Screw Fixation and Pedicle Screw Fixation: A Prospective Study,” J Neurosurg Spine, Vol. 7, pp. 287-292 (2007).
    [24] Polly, D. W., Klemme, W. R., Cunningham, B. W., and Burnette, J. B., “The Biomechanical Significance of Anterior Colum Support in a Simulated Single-Level Spinal Fusion,” Journal of Spinal Disorders, Vol. 13, No. 1, pp. 58-62 (2000).
    [25] Kim, K. S., Yang, T. K., and Lee, J. C., “Radiological Changes in the Bone Fusion Site after Posterior Lumbar Interbody Fusion Using Carbon Cages Impacted with Laminar Bone Chips: Follow-up Study over More Than 4 Years,” Spine, Vol. 30, No. 6, pp. 655-660 (2005).
    [26] Quigley, K. J., Alander, D. H., and Bledsoe, J. G., “An in Vitro Biomechanical Investigation: Variable Positioning of Leopard Carbon Fiber Interbody Cages,” J Spinal Disord Tech, Vol. 21, No. 6, pp. 442-447 (2008).
    [27] Faundez, A. A., Mehbod, A. A., Wu, C., Wu, W., Ploumis, A., and Transfeldt, E. E., “Position of Interbody Spacer in Transforaminal Lumbar Interbody Fusion: Effect on 3-Dimensional Stability and Sagittal Lumbar Contour,” J Spinal Disord Tech, Vol. 21, No. 3, pp. 175-180 (2008).
    [28] Abbushi, A., Cabraja, M., Thomale, U. W., Woiciechowsky, C., and Kroppenstedt, S. N., “The Influence of Cage Positioning and Cage Type on Cage Migration and Fusion Rates in Patients with Monosegmental Posterior Lumbar Interbody Fusion and Posterior Fixation,” Eur Spine J, Vol. 18, No. 11, pp. 1621-1628 (2009).
    [29] Best, N. M., and Sasso, R. C., “Efficacy of Translaminar Facet Screw Fixation in Circumferential Interbody Fusions as Compared to Pedicle Screw Fixation,” Journal of Spinal Disorders & Techniques, Vol. 19, No. 2, pp. 98-103 (2006).
    [30] Oxland, T. R., and Lund, T., “Biomechanics of Stand-Alone Cages and Cages in Combination with Posterior Fixation: A Literature Review,” Eur Spine J, Vol. 9, pp. S95-S101 (2000).
    [31] Kuslich, S. D., Ulstrom, C. L., Griffith, S. L., Ahern, J. W., and Dowdle, J. D., “The Bagby and Kuslich Method of Lumbar Interbody Fusion. History, Techniques, and 2-Year Follow-up Results of a United States Prospective, Multicenter Trial,” Spine, Vol. 23, pp. 1267-1279 (1998).
    [32] Grob, D., and Humke, T., “Translaminar Screw Fixation in the Lumbar Spine: Technique, Indications, Results,” Eur Spine J, Vol. 7, pp. 178-118 (1998).
    [33] Ames, C. P., Acosta, F. L., Chi, J., lyengar, J., Muiru, W., Acaroglu, E., and Puttlitz, C. M., “Biomechanical Comparison of Posterior Lumbar Interbody Fusion and Transforaminal Lumbar Interbody Fusion Performed at 1 and 2 Levels,” Spine, Vol. 30, No. 19, pp. E562-E566 (2005).
    [34] Panjabi, M. M., Duranceau, J., Goel, V., Oxland, T., and Takata, K., “Cervical Human Vertebrae. Quantitative Three-Dimensional Anatomy of the Middle and Lower Regions,” Spine, Vol. 16, pp. 861-869 (1991).
    [35] Berry, J. L., Moran, J. M., Berg, W. S., and Steffee, A. D., “A Morphometric Study of Human Lumbar and Selected Thoracic Vertebrae,” Spine, Vol. 12, No. 4, pp. 362-366 (1987).
    [36] Bernard, T. N., and Seibert, C. E., “Pedicle Diameter Determined by Computed Tomography,” Spine, Vol. 17, pp. S160-163 (1992).
    [37] Krag, M. H., Weaver, D. L., and Beynnon, B. D., “Morphometry of the Thoracic and Lumbar Spine Related to Transpedicular Screw Placement for Surgical and Spinal Fixation,” Spine, Vol. 13, pp. 27-32 (1988).
    [38] Krag, M. H., Seroussi, R. E., Wilder, D. G., and Pope, M. H., “Internal Displacement Distribution from in Vitro Loading of Human Thoracic and Lumbar Spinal Motion Segments: Experimental Results and Theoretical Predictions,” Spine, Vol. 12, pp. 1001-1007 (1987).
    [39] McCormack, B. M., Benzel, E. C., Adams, M. S., Baldwin, N. G., Rupp, F. W., and Maher, D. J., “Anatomy of the Thoracic Pedicle,” Neurosurgery, Vol. 37, pp. 303-308 (1995).
    [40] Panjabi, M. M., Takata, K., Goel, V., Federico, D., Oxland, T., Duranceau, J., and Krag, M., “Thoracic Human Vertebrae: Quantitative Three-Dimensional Anatomy,” Spine, Vol. 16, pp. 888-901 (1991).
    [41] Zindrick, M. R., Wiltse, L. L., Doornik, A., Widell, E. H., Knight, G. W., Patwardhan, A. G., Thomas, J. C., Rothman, S. L., and Fields, B. T., “Analysis of the Morphometric Characteristics of the Thoracic and Lumbar Pedicles,” Spine, Vol. 12, pp. 160-166 (1987).
    [42] Belytschko, T., Kulak, R. F., Schultz, A. B., and Galante, J. O., “Finite Element Stress Analysis of an Intervertebral Disc,” J Biomechanics, Vol. 7, pp. 277-285 (1974).
    [43] Totoribe, K., Tajima, N., and Chosa, E., “A Biomechanical Study of Posterolateral Lumbar Fusion Using a Three-Dimensional Nonlinear Finite Element Method,” Journal of OrthopaedicScience, Vol. 4, pp. 115-126 (1999).
    [44] Miyakoshi, N., Abe, E., Shimada, Y., Okuyama, K., Suzuki, T., and Sato, K., “Outcome of One-Level Posterior Lumbar Interbody Fusion for Spondylolisthesis and Postoperative Intervertebral Disc Degeneration Adjacent to the Fusion,” Spine, Vol. 25, No. 14, pp. 1837-1842 (2000).
    [45] Hanley, E. J., “The Indications for Lumbar Spinal Fusion with and without Instrumentation,” Spine, Vol. 20(24 Suppl), pp. 143S-153S (1995).
    [46] Goel, V. K., Lim, T. H., Gwon, J., Chen, J. Y., Winterbottom, J. M., Park, J. B., Weinstein, J. N., and Ahn, J. Y., “Effects of Rigidity of an Internal Fixation Device. A Comprehensive Biomechanical Investigation,” Spine, Vol. 16, pp. S155-S161 (1991).
    [47] Kim, Y., “Finite Element Analysis of Anterior Lumbar Interbody Fusion : Threaded Cylindrical Cage and Pedicle Screw Fixation,” Spine, Vol. 32, No. 23, pp. 2558-2568 (2007).
    [48] Lim, T. H., and Goel, V. K., “Load Sharing Characteristics in the Stabilized Lumbar Motion Segment: A Finite Element Study,” J Musculoskeletal Research Vol. 2, pp. 55-64 (1998).
    [49] Pitzen, T., Matthis, D., and Steudel, W.-I., “The Effect of Posterior Instrumentation Following Plif with Bak Cages Is Most Pronounced in Weak Bone,” Acta Neurochir (Wien), Vol. 144, pp. 121-128 (2002).
    [50] Polikeit, A., Ferguson, S. J., Nolte, L. P., and Orr, T. E., “The Importance of the Endplate for Interbody Cages in the Lumbar Spine,” Eur Spine J, Vol. 12, pp. 556-561 (2003).
    [51] Goel, V. K., Kim, Y. E., Lim, T. H., and Weinstein, J. N., “An Analytical Investigation of the Mechanics of Spinal Instrumentation,” Spine, Vol. 13, pp. 1003-1011 (1988).
    [52] Kim, Y., “Prediction of Mechanical Behaviors at Interfaces between Bone and Two Interbody Cages of Lumbar Spine Segments,” Spine, Vol. 26, No. 13, pp. 1437-1442 (2001).
    [53] Keyak, J. H., and Skinner, H. B., “Three-Dimensional Finite Element Modeling of Bone: Effects of Element Size,” J Biomed Eng, Vol. 14, pp. 483-489 (1992).
    [54] Marks, L. W., and Gardner, T. N., “The Use of Strain Energy as a Convergence Criterion in the Finite Element Modeling of Bone and the Effect of Model Geometry on Stress Convergence,” J Biomed Eng, Vol. 15, pp. 474-476 (1993).
    [55] Hsu, W. H., Chao, C. K., Hsu, H. C., Lin, J., and Hsu, C. C., “Parametric Study on the Interface Pullout Strength of the Vertebral Body Replacement Cage Using Fem-Based Taguchi Methods,” Medical Engineering & Physics, Vol. 31, No. 3, pp. 287-294 (2008).
    [56] Yang, K., Teo, E. C., and Fuss, F. K., “Application of Taguchi Method in Optimization of Cervical Ring Cage,” Journal of Biomechanics, Vol. 40, pp. 3251-3256 (2007).
    [57] Mosekilde, L., Mosekilde, L., and Danielson, C. C., “Biomechanical Competence of Vertebral Trabecular Bone in Relation to Ash Ednsity and Age in Normal Individuals,” Bone, Vol. 8, pp. 79-85 (1987).
    [58] Silva, M. J., Keaveny, T. M., and Hayes, W. C., “Load Sharing between the Shell and Centrum in the Lumbar Vertebral Body,” Spine, Vol. 22, pp. 140-150 (1997).
    [59] Wilke, H. J., Wenger, K., and Claes, L., “Testing Criteria for Spinal Implant: Recommendations for the Standardization of in Vitro Stability Testing of Spinal Implants,” Eur Spine J, Vol. 7, pp. 148-154 (1998).
    [60] Jost, B., Cripton, P. A., Lund, T., Oxland, T. R., Lippuner, K., Jaeger, P., and Nolte, L. P., “Compressive Strength of Interbody Cages in the Lumbar Spine: The Effect of Cage Shape, Posterior Instrumentation and Bone Density,” Eur Spine J, Vol. 7, pp. 132-141 (1998).
    [61] Lund, T., Oxland, T. R., Jost, B., Cripton, P., Grassmann, S., Etter, C., and Nolte, L. P., “Interbody Cage Stabilisation in the Lumbar Spine: Biomechanical Evaluation of Cage Design, Posterior Instrumentation and Bone Desity,” J bone Joint Surg Br, Vol. 80, pp. 351-359 (1998).
    [62] Grant, J. P., Oxland, T. R., and Dvorak, M. F., “Mapping the Structural Properties of the Lumbosacral Vertebral Endplates,” Spine, Vol. 26, pp. 889-896 (2001).
    [63] Kumar, A., Kozak, J. A., Dcherty, B. J., and Dickson, J. H., “Interspace Distraction and Graft Subsidence after Anterior Lumbar Fusion with Femoral Strut Allograft,” Spine, Vol. 18, pp. 2393-2400 (1993).
    [64] Chen, L., Yang, H., and Tang, T., “Cage Migration in Spondylolisthesis Treated with Posterior Lumbar Interbody Fusion Using Bak Cages,” Spine, Vol. 30, pp. 2171-2175 (2005).
    [65] Nibu, K., Panjabi, M. M., Oxland, T., and Cholewicki, J., “Multidirectional Stabilizing Potential of Bak Interbody Spinal Fusion System for Anterior Surgery,” J. Spinal Dis, Vol. 10, pp. 357-362 (1997).
    [66] Kwon, B. K., Berta, S., Daffner, S. D., Vaccaro, A. R., Hilibrand, A. S., Grauer, J. N., Beiner, J., and Albert, T. J., “Radiographic Analysis of Transforaminal Lumbar Interbody Fusion for the Treatment of Adult Isthmic Spondylolisthesis,” J Spinal Disord Tech, Vol. 16, No. 5, pp. 469-476 (2003).
    [67] Rathonyi, G. C., Oxland, T. R., Gerich, U., Grassmann, S., and Nolte, L.-P., “The Role of Supplemental Translaminar Screws in Anterior Lumbar Interbody Fixation: A Biomechanical Study,” Eur Spine J, Vol. 7, pp. 400-407 (1998).
    [68] Ferrara, L. A., and Benzel, E. C., “Biomechanics of Interbody Fusion,” Techniques in Neurosurgery, Vol. 7, No. 2, pp. 100-109 (2001).
    [69] Gerber, M., Crawford, N. R., Chamberlain, R. H., Fifield, M. S., LeHuec, J.-C., and Dickman, C. A., “Biomechanical Assessment of Anterior Lumbar Interbody Fusion with an Anterior Lumbosacral Fixation Screw-Plate: Comparison to Stand-Alone Anterior Lumbar Interbody Fusion and Anterior Lumbar Interbody Fusion with Pedicle Screws in an Unstable Human Cadaver Model ” Spine, Vol. 31, No. 7, pp. 762-768 (2006).
    [70] Brodke, D. S., Bachus, K. N., Mohr, A., and Nguyen, B.-K. N., “Segmental Pedicle Screw Fixation or Cross-Links in Multilevel Lumbar Constructs: A Biomechanical Analysis,” The Spine Journal, Vol. 1, pp. 373-379 (2001).
    [71] Dick, J. C., Zdeblick, T. A., Bartel, B. D., and Kunz, D. N., “Mechanical Evaluation of Cross-Link Designs in Rigid Pedicle Screw Systems,” Vol. 22, No. 4, pp. 370-375 (1997).
    [72] Chen, C. S., Cheng, C. K., Liu, C. L., and Lo, W. H., “Stress Analysis of the Disc Adjacent to Interbody Fusion in Lumbar Spine,” Medical Engineering & Physics, Vol. 23, No. 7, pp. 485-493 (2001).

    QR CODE