簡易檢索 / 詳目顯示

研究生: 林庭緯
Ting-Wei Lin
論文名稱: 建立三維人體下肢骨骼肌肉模型於拇指外翻治療之生物力學評估
Biomechanical Evaluation of Different Hallux Valgus Treatment Using Three-Dimensional Human Musculoskeletal Lower Extremity Model
指導教授: 徐慶琪
Ching-Chi Hsu
口試委員: 釋高上
Kao-Shang shih
趙振綱
Ching-Kong Chao
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 78
中文關鍵詞: 拇指外翻植入物失效植入物穩定度有限元素分析
外文關鍵詞: Hallux valgus, Implant failure, Implant stability, Finite element analysis
相關次數: 點閱:251下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 拇指外翻主要成因為大拇指底部的關節脫位,引起大拇指往外側彎造成骨頭向外突出。截骨術固定板為最常運用於拇指外翻治療的方式,目前對於固定板的主要評估方式來自於臨床結果。雖然先前研究開發的三維足踝模型提供相關生物力學參考,但它們的數值模型可能有過於簡單化、擬真度不足等問題。因此本研究的目的是建立更完整下肢骨骼肌肉模型與植入物模型,並透過有限元素法探討三維人體下肢骨骼肌肉模型於拇指外翻治療之生物力學評估。

    研究使用Solidworks 2015依序完成完整下肢模型建構、截骨術固定器模型建構與不同治療下肢模型建構,接著使用ANSYS Workbench 17.0進行模擬。本研究主要使用不同類型的截骨術固定方式,包含骨板、克氏針(K-pin)與加入繃帶的克氏針(K-pin+B),其中固定板設計包括:四孔四螺絲(4H4S)、六孔四螺絲(6H4S)、動態壓縮式六孔六螺絲(6H6S-D)、鎖定式六孔六螺絲(6H6S-L)。探討穩定度、蹠骨應力、植入物應力。

    結果顯示骨板類會比K-pin具備更好的穩定度(骨變形降低),另外,加入繃帶的K-pin穩定度有顯著提升。對於應力結果,相較於其他植入物治療,4H4S與6H6S-L植入物應力最小,6H6S-L同時具有最低的骨應力,K-PIN+B雖然可使植入物應力降低,但同時提高骨應力。這項研究可以提供外科醫師對於拇指外翻治療之生物力學結果與原理。


    Hallux valgus is the commonest forefoot deformity. Different treatment methods have been applied to fix this problem including osteotomy fixation plates, Kirschner wires, and bunion splints. Past studies have investigated the biomechanics of hallux valgus with different treatments using numerical and/or experimental approaches. However, there are rare studies that evaluated each treatment method using a realistic musculoskeletal lower extremity model. Thus, the purposes of this study were to develop a more complete three-dimensional human musculoskeletal lower extremity model and to evaluate the strengths and limitations of different hallux valgus treatment techniques.

    Four types of osteotomy fixation plates, a Kirschner wire (K-pin), and a Kirschner wire with a bandage (K-pin+B) were developed using SolidWorks. The osteotomy fixation plate designs included 4-hole plate with 4 screws (4H4S), 6-hole plate with 4 screws (6H4S), 6-hole plate with 6 screws and dynamic compression holes (6H6S-D), and 6-hole plate with 6 screws and locking compression holes (6H6S-L). All the fixation devices were assembled into the musculoskeletal lower extremity model. Sixteen types of the foot ligaments were considered and simulated using tension-only spring elements. The finite element models of the lower extremity with different hallux valgus treatments were developed using ANSYS Workbench. The proximal tibia was fully constrained, and an Achilles tendon was simulated by applying a tendon force. A ground reaction force was applied to a moveable ground. In post-processing, the bone fixation stability, the implant stress, and the bone stress were calculated and discussed.

    All the plate fixations revealed better bone fixation stability (lower bone deformation) than the K-pin. It was surprising that the K-pin+B significantly improved the fixation stability compared to the K-pin. For the results of the implant stress and bone stress, the 4H4S and 6H6S-L had lower implant stress compared to the other treatments. The 6H6S-L showed the lowest bone stress compared to the other plate fixations and the Kirschner wire fixations. Adding the bandage to the K-pin treatment could reduce the implant stress, but the bone stress was found to be increased. This study could provide surgeons some useful information and theoretical basis in the biomechanics for the treatment of hallux valgus.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1動機與目的 1 1.2下肢介紹 2 1.2.1下肢骨結構 2 1.2.2下肢肌肉 4 1.2.3下肢韌帶 7 1.3行走步態 9 1.4拇指外翻手術介紹 11 1.5電腦數值分析 17 1.6本文架構 22 第二章 材料與方法 23 2.1下肢骨模型及植入物建立 23 2.1.1下肢骨骼模型建立 23 2.1.2下肢肌肉模型建立 25 2.1.3植入物模型建立 27 2.1.4簡單模型建立 36 2.1.5韌帶系統建立 38 2.2有限元素模擬分析 41 2.2.1材料參數 41 2.2.2網格元素 44 2.2.3負載與邊界條件 45 2.2.4數值模擬生物力學評估 49 第三章 結果 50 3.1.模型幾何驗證 50 3.2收斂性分析結果 52 3.3單一蹠骨模型位移結果 56 3.4單一蹠骨模型應力結果 59 3.5完整下肢模型位移結果 62 3.6完整下肢模型應力結果 65 第四章 討論 68 4.1單一蹠骨模型結果 68 4.2完整模型結果 69 4.3單一蹠骨模型與完整模型比較 70 4.4研究限制 72 第五章 結論 73 5.1結論 73 5.2未來展望 74 參考文獻 75

    [1] R. A. Mann, and M. J. Coughlin, “Hallux Valgus-Etiology, Anatomy, Treatment and Surgical Considerations,” Clinical orthopaedics and related research, vol. 157, pp. 31-41, 1981.
    [2] M. Glynn, J. Dunlop, and D. Fitzpatrick, “The Mitchell distal metatarsal osteotomy for hallux valgus,” Bone & Joint Journal, vol. 62, no. 2, pp. 188-191, 1980.
    [3] V. John, K. K. Panagiotis, V. Polizois, E. S. Dimitrios, and P. G. Spyridon, “Preservation of the length of the first metatarsal after modified Mitchell’s osteotomy for hallux valgus deformity. Overview, technique and preliminary results,” Clin Res Foot Ankle, vol. 3, no. 164, pp. 2, 2015.
    [4] N. Wülker, and F. Mittag, “The treatment of hallux valgus,” Deutsches Ärzteblatt International, vol. 109, no. 49, pp. 857, 2012.
    [5] A. Robinson, and J. Limbers, “Modern concepts in the treatment of hallux valgus,” Bone & Joint Journal, vol. 87, no. 8, pp. 1038-1045, 2005.
    [6] MedicineNet. "Medical Definition of Skeleton," https://www.medicinenet.com/script/main/art.asp?articlekey=8642.
    [7] D. Campbell. "Bones and Joints of the Lower Extremity," http://www.bodylightbooks.com/members/muscleviewer_le.php.
    [8] M. Maestro, and B. Ferre, “Anatomie fonctionnelle du pied et de la cheville de l’adulte,” Revue du rhumatisme monographies, vol. 81, no. 2, pp. 61-70, 2014.
    [9] A. Ianuzzi, and C. Mkandawire, "Applications of UHMWPE in total ankle replacements," UHMWPE Biomaterials Handbook (Second Edition), pp. 153-169: Elsevier, 2009.
    [10] H. Kura, Z. P. Luo, H. B. Kitaoka, and K. N. An, “Quantitative analysis of the intrinsic muscles of the foot,” The Anatomical Record, vol. 249, no. 1, pp. 143-151, 1997.
    [11] M. Stephen Pinney. "Ligaments of the Foot and Ankle Overview," https://www.footeducation.com/page/ligaments-of-foot-and-ankle-overview.
    [12] F. H. Netter. "Ligaments of the Ankle Joint Ligaments and Tendons of Ankle," https://painepodcast.com/2016/05/24/14-ankle-sprains/.
    [13] G. Woolman. "The Gait Cycle," http://www.footbionics.com/Patients/The+Gait+Cycle.html.
    [14] D. W.C. Wong, M. Zhang, J. Yu, and A. K.-L. Leung, “Biomechanics of first ray hypermobility: an investigation on joint force during walking using finite element analysis,” Medical engineering & physics, vol. 36, no. 11, pp. 1388-1393, 2014.
    [15] S. Winiarski, and A. Rutkowska-Kucharska, “Estimated ground reaction force in normal and pathological gait,” Acta of Bioengineering & Biomechanics, vol. 11, no. 1, 2009.
    [16] M. Erdil, H. H. Ceylan, G. Polat, D. Kara, E. Bozdag, and E. Sunbuloglu, “A New Mini-External Fixator for Treating Hallux Valgus: A Preclinical, Biomechanical Study,” The Journal of Foot and Ankle Surgery, vol. 55, no. 1, pp. 35-38, 2016.
    [17] B. Magnan, R. Bortolazzi, E. Samaila, L. Pezzè, N. Rossi, and P. Bartolozzi, “Percutaneous distal metatarsal osteotomy for correction of hallux valgus,” J Bone Joint Surg Am, no. 1 suppl 1, pp. 135-148, 2006.
    [18] D. W. Austin, and E. O. Leventen, “A new osteotomy for hallux valgus: a horizontally directed" V" displacement osteotomy of the metatarsal head for hallux valgus and primus varus,” Clinical orthopaedics and related research, vol. 157, pp. 25-30, 1981.
    [19] B. J. Sangeorzan, and S. T. Hansen Jr, “Modified Lapidus procedure for hallux valgus,” Foot & ankle, vol. 9, no. 6, pp. 262-266, 1989.
    [20] S. Giannini, F. Ceccarelli, R. Bevoni, and F. Vannini, “Hallux valgus surgery: the minimally invasive bunion correction (SERI),” Techniques in Foot & Ankle Surgery, vol. 2, no. 1, pp. 11-20, 2003.
    [21] P. M. Lagaay, G. A. Hamilton, L. A. Ford, M. E. Williams, S. M. Rush, and J. M. Schuberth, “Rates of revision surgery using Chevron-Austin osteotomy, Lapidus arthrodesis, and closing base wedge osteotomy for correction of hallux valgus deformity,” The Journal of foot and ankle surgery, vol. 47, no. 4, pp. 267-272, 2008.
    [22] N. P. Saragas, “Proximal opening-wedge osteotomy of the first metatarsal for hallux valgus using a low profile plate,” Foot & ankle international, vol. 30, no. 10, pp. 976-980, 2009.
    [23] J. W. Gallentine, J. K. DeOrio, and M. J. DeOrio, “Bunion surgery using locking-plate fixation of proximal metatarsal chevron osteotomies,” Foot & ankle international, vol. 28, no. 3, pp. 361-368, 2007.
    [24] H. Windhagen, K. Radtke, A. Weizbauer, J. Diekmann, Y. Noll, U. Kreimeyer, R. Schavan, C. Stukenborg-Colsman, and H. Waizy, “Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study,” Biomedical engineering online, vol. 12, no. 1, pp. 62, 2013.
    [25] B. Magnan, L. Pezzè, N. Rossi, and P. Bartolozzi, “Percutaneous distal metatarsal osteotomy for correction of hallux valgus,” JBJS, vol. 87, no. 6, pp. 1191-1199, 2005.
    [26] K.H. Kristen, K. Berger, C. Berger, W. Kampla, W. Anzböck, and S. Weitzel, “The first metatarsal bone under loading conditions: a finite element analysis,” Foot and ankle clinics, vol. 10, no. 1, pp. 1-14, 2005.
    [27] J. Yu, J. T.M. Cheung, D. W.-C. Wong, Y. Cong, and M. Zhang, “Biomechanical simulation of high-heeled shoe donning and walking,” Journal of biomechanics, vol. 46, no. 12, pp. 2067-2074, 2013.
    [28] D. W.C. Wong, Y. Wang, M. Zhang, and A. K.-L. Leung, “Functional restoration and risk of non-union of the first metatarsocuneiform arthrodesis for hallux valgus: a finite element approach,” Journal of biomechanics, vol. 48, no. 12, pp. 3142-3148, 2015.
    [29] C. H. Lee, C. M. Shih, K. C. Huang, K. H. Chen, L. K. Hung, and K. C. Su, “Biomechanical analysis of implanted clavicle hook plates with different implant depths and materials in the acromioclavicular joint: a finite element analysis study,” Artificial organs, vol. 40, no. 11, pp. 1062-1070, 2016.
    [30] W.P. Chen, F.T. Tang, and C.-W. Ju, “Stress distribution of the foot during mid-stance to push-off in barefoot gait: a 3-D finite element analysis,” Clinical Biomechanics, vol. 16, no. 7, pp. 614-620, 2001.
    [31] R. Mao, J. Guo, C. Luo, Y. Fan, J. Wen, and L. Wang, “Biomechanical study on surgical fixation methods for minimally invasive treatment of hallux valgus,” Medical Engineering and Physics, vol. 46, pp. 21-26, 2017.
    [32] D. W.C. Wong, M. Zhang, J. Yu, and A. K.-L. Leung, “Biomechanics of first ray hypermobility: an investigation on joint force during walking using finite element analysis,” Medical Engineering and Physics, vol. 36, no. 11, pp. 1388-1393, 2014.
    [33] E. Morales-Orcajo, J. Bayod, R. Becerro-de-Bengoa-Vallejo, M. Losa-Iglesias, and M. Doblare, “Influence of first proximal phalanx geometry on hallux valgus deformity: a finite element analysis,” Medical & biological engineering & computing, vol. 53, no. 7, pp. 645-653, 2015.
    [34] S. G. Hofstaetter, R. R. Glisson, C. J. Alitz, H. J. Trnka, and M. E. Easley, “Biomechanical comparison of screws and plates for hallux valgus opening-wedge and Ludloff osteotomies,” Clinical Biomechanics, vol. 23, no. 1, pp. 101-108, 2008.

    QR CODE