簡易檢索 / 詳目顯示

研究生: 高偉格
Wei-ko Kao
論文名稱: 關聯式資料庫於結構耐震評估之應用—以校舍耐震評估為例
Application of Relational Database for Seismic Assessment of Structures – A Case Study of School Buildings
指導教授: 陳鴻銘
Hung-Ming Chen
口試委員: 謝尚賢
Shang-Hsien Hsieh
謝佑明
Yo-Ming Hsieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 136
中文關鍵詞: 自動化耐震評估校舍模型結構構件資料庫非線性
外文關鍵詞: nonlinear analysis, structural component, school building, seismic assessment, automation, database, modeling
相關次數: 點閱:196下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現有非線性分析模擬技術已能掌握結構系統於地震力作用下之整體反應與其細部構件之行為,使得數值分析成為評估結構物耐震能力最詳細可靠的方法,美國FEMA 之規範已建議以非線性推垮分析評估結構物於不同程度地震力之作用下之破壞型式與可靠度,以作為結構物設計與維護補強工作之依據。
    分析模擬結果之正確性大多仰賴能正確地模擬結構物行為之數值模型之建立,而結構物數值模型建立之工作需由結構工程師,根據結構物之設計資料與現況,依其專業與經驗之判斷來完成,相較於後續由電腦執行之分析計算,此實為高度仰賴專業人力之耗時工作,然而中小學校舍多為型式規則之結構物,應有提出標準化與參數化之數值模型建立模式之可能,以輔助結構工程師以自動或半自動的方式快速有效率地建立各校舍不同詳細程度之非線性數值模型。
    校舍之非線性數值模型,除了需有校舍整體結構之幾何尺寸外,尚需有能正確模擬結構構件行為之非線性元素或構件模型,故本研究除了持續發展與擴充現有之校舍資料庫外,另將彙整國內外結構構件行為模擬之研究成果並建立一個結構構件非線性模型庫,其除了可做為支援使用者建模決策之知識庫外,本研究並將進一步提出標準化之整合此兩個資料庫中資料以建立中小學校舍結構數值模型之模式,並將此模式設計開發成為系統,利用此系統,可自動地基於現有資料庫之資料,依需要快速地自動產生我國各校舍建物不同詳細程度之數值模型,供校舍相關之耐震評估與災損分析使用。
    結構構件非線性模型庫中之構件模型,可以是完全基於實驗結果之回歸曲線或公式,或是基於構件行為以少數簡單的非線性元素所構成,經實驗校準之簡化模型,本研究將根據這些模型之儲存、搜尋、與使用等需求提出結構構件非線性模型庫之資料庫綱要與使用者介面規劃。至於現有校舍資料庫之擴充與發展方面,本研究也將進一步收集並整合部分校舍之詳細資料,例如設計圖說等,以供校舍詳細分析模擬工作之所需,以及相關研究之參考。


    The current nonlinear structural analysis technology has achieved that the nonlinear response of a structure or a structural component can be accurately simulated. The reliability of a nonlinear analysis result highly depends on the validity of the analytical model. A valid analytical model must be able to numerically describe the realistic post-damage behavior of the structure. In present, the National Center for Research on Earthquake Engineering (NCREE) in Taiwan has established a database for school buildings. The database contains surveying data of over 12,000 school buildings in Taiwan. Since most of school buildings were built based on a few standard plans, it is possible to automatically create linear-elastic model for school buildings by a standard procedure using some school building data, which has been collected in school building database, as parameters. To build a nonlinear model, however, requires nonlinear elements or nonlinear models for simulating the nonlinear behaviors of various structural components. The knowledge on structural component modeling cannot be automatically generated by a computer program. In order to fulfill the automatic modeling of school building for nonlinear analysis, this research established a structural component model database by collecting various structural component models in various details. By considering the characteristics of and relationships between the modeling entities, this paper proposes data structure and database schema for storing structural component models. The proposed structural component model database alone can serve as a decision supporting system for building nonlinear analytical models. Furthermore, since all the modeling information is available either in school building database or structural component model database, a standard procedure to automatically generate school building models by querying the two databases based on user’s selections is proposed.

    論文摘要 I 致謝 II 目錄 III 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1. 研究動機 1 1.2. 研究目的 4 1.3. 研究方法 7 1.4. 論文架構 8 第二章 背景說明 10 2.1. 文獻回顧 10 2.2. 使用開發技術 12 2.2.1. 關聯式資料庫 12 2.2.1.1. ER model 12 2.2.1.2. SQL 13 2.2.1.3. MS SQL SERVER 2000 13 2.2.2. 物件導向程式設計 13 2.2.2.1. 資料封裝 14 2.2.2.2. 繼承 14 2.2.2.3. 多型 14 2.2.3. UML 15 2.2.4. PHP 5 15 2.2.5. XML 15 2.2.5.1. DTD 16 2.2.5.2. DOM 16 2.2.5.3. MathML 16 第三章 校舍耐震資料庫 18 3.1. 建置目的 18 3.1.1. 簡易調查 20 3.1.2. 初步評估 22 3.1.3. 詳細評估與補強設計 23 3.2. 校舍耐震資料庫之規劃與設計 24 3.3. 校舍資料收集現況 27 第四章 結構構件非線性模型庫 29 4.1. 結構構件非線性模型 30 4.2. 結構構件非線性資料結構 34 4.3. 結構構件非線性模型庫資料庫綱要 38 第五章 校舍非線性分析模型自動建立系統 51 5.1. 系統功能需求分析 52 5.2. 分析模型自動建立流程 54 5.3. 系統架構 57 5.4. 系統資料結構 61 5.4.1. 構件模型資料結構 61 5.4.2. 整體結構模型資料結構 63 5.5. 系統運作機制 65 5.5.1. 系統運作流程 65 5.5.2. 校舍分析模型之XML儲存格式 67 5.5.3. 結構構件非線性模型之XML儲存格式 70 5.5.4. 結構分析模型資料儲存格式之轉換計算 73 5.5.5. 功能曲線之計算處理 76 第六章 系統使用範例 80 6.1. 選擇校舍 80 6.2. 選擇構件模型 82 6.3. 選擇並設定構件模型 83 6.4. 輸出 87 6.5. 匯入分析軟體 88 第七章 結論與未來展望 89 7.1. 結論 89 7.2. 未來展望 90 參考文獻 93 附錄 A 校舍耐震評估簡易調查表 95 附錄 B 校舍耐震評估初步評估表 107 附錄 C 模型自動建構系統成員列表 109 附錄 D 校舍資料庫表格綱要 115

    [1] Aoyama, H., "Design of Modern Highrise Reinforced Concrete Structures", 1st edition, World Scientific Publishing Company, January 15, 2002.
    [2] ATC-40, “Seismic Evaluation and Retrofit of Concrete Buildings”, Report No. SSC 96-01, Applied Technology Council, 1996.
    [3] Ballard T.A.; Sedarat H., “SR5 Lake Washington Ship Canal Bridge pushover analysis”, Computers and Structures, Vol. 72, pp. 63-80, 1999.
    [4] Chi W.-M.; El-Tawil S.; Deierlein G.G.; Abel J.F., “Inelastic analyses of a 17-story steel framed building damaged during Northridge”, Engineering Structures, Vol. 20, No. 4-6, pp. 481-495(15), 1998.
    [5] D’Ambrisi, A., and Fillippou, F. C., "Modeling of Cyclic Shear Behavior in RC Members", ASCE Journal of Structural Engineering, Vol. 125, No. 10, pp. 1143-1150, 1999.
    [6] El-Tawil, S., Kuenzli, C. M., and Hassan, M., “Pushover of Hybrid Coupled Walls. Part I: Design and Modeling”, ASCE Journal of Structural Engineering, Vol. 128, No. 10, 1272-1281, 2002.
    [7] El-Tawil, S. and Kuenzli, C. M., “Pushover of Hybrid Coupled Walls. Part II: Analysis and Behavior”, ASCE Journal of Structural Engineering, Vol. 128, No. 10, 1282-1289, 2002.
    [8] Elwood, K.J., and Moehle, J.P., “Axial Capacity Model for Shear-Damaged Columns”, ACI Structural Journal, Vol. 102, pp. 578-587, 2005.
    [9] Federal Emergency Management Agency (FEMA)-273, “NEHRP guidelines for the seismic rehabilitation of buildings,” FEMA 273/October 1997, Applied Technology Council, Redwood City, California, USA, 1997.
    [10] Giberson, M. F., “Two Nonlinear Beams with Definition of Ductility”, ASCE Journal of Structural Division, Vol.95 (ST2).pp. 137-157, 1969.
    [11] Gupta, A. and Krawinkler, H., “Behavior of Ductile SMRFs at Various Seismic Hazard Levels”, ASCE Journal of Structural Engineering, Vol. 126, No. 1, pp. 98-107, January 2000.
    [12] Kabeyasawa, T., Shiohara, T., Otani, S.and Aoyama, H., “Analysis of the full scale seven-story reinforced concrete test structure”, J. Fac. Eng., University of Tokyo XXXVII, Vol. 2, pp.431-478, 1983.
    [13] Kim, C.-K., Lee, S.-E., Hong, S.-M., “A New Integrated Database Model for the Design and Construction Information of Building Structures”, Int'l Conf on Construction Information Technology 2000, Hong Kong, 2000. 1.
    [14] Law, K.-H., Barsalou, T., Wiederhold, G., "Management of Complex Structural Engineering Objects in a Relational Framework, Engineering with Computers", Engineering with Computers, Vol. 6, 81-92,1990.
    [15] Krawinkler, H. and Seneviratna, G.D.P.K. “Pros and Cons of a Pushover Analysis for Seismic Performance Evaluation”, Engineering Structures, Vol. 20, No. 4-6, pp. 452-464, 1998.
    [16] Li, K.-N. and Otani, S., “Multi-spring model for 3-dimensional analysis of RC members”, J. Struct. Eng. Mech. 1(1)m pp. 17-30, 1993.
    [17] Okamuram H. and Maekawa, K., “Nonlinear Analysis and Constitutive Models of Reinforced Concrete”, Gihodo-Shuppan, 1991.
    [18] Sezen, H., and Moehle, J. P., “Shear Strength Model for Lightly Reinforced Concrete Columns”, ASCE Journal of Structural Engineering, Vol. 130, No. 11, pp. 1692-1703, November 2004.
    [19] Somo, S. "Modeling error analysis of shear predicting models for rc beams", Hong, H.P. Source: Structural Safety, v 28, n 3, p 217-230, July, 2006.
    [20] Sozen, M. A., Monteiro, P., Moehle, J. P., Tang, H. T., “Effects of Cracking and Age on Stiffness Reinforced Concrete Walls Resisting In-Plane Shear,” A Proceedings of the Fourth Symposium on Nuclear Power Plant Structures, Equipment, and Piping, North Carolina State University, Raleigh, NC, December, pp. 3.1-3.13 (1992).
    [21] Takayasawa, T. and Schnobrich, W.C., “Computed Behavior of Reinforced Concrete Coupled Shear Walls”, Civil Eng. Stud. Struct. Res. Ser., Vol. 434, University of Illinois, Urbana, 1976.
    [22] Takeda, T. Sozen, M. A., and Nielsen, N. N., “Reinforced Concrete Response to Simulated Earthquake”, ASCE Journal of Structural Division, Vol. 96, pp. 2557-2573, 1976.
    [23] Vulcano, A. and Bertero, V. V., “Analytical Model for Predicting the Lateral Response of RC Shear Walls”, Report No. UCB/EERC-87/19, Berkeley.
    [24] Wen, Y. K., Collins, K. R., Han, S. W., and Elwood, K.J., “Designs of Buildings under Seismic Loads”, Structural Safety, Vol. 18, No. 2-3, pp. 195-224, 1996.
    [25] 杜怡萱,涂耀賢,「耐震詳評之簡化推垮分析法」,國家地震工程研究中心校舍之耐震評估與補強講習會,民國九十四年十月。
    [26] 周武坤,"GPS/GIS科技應用於高雄都會區地下管線工程管理資料庫系統之建立與應用",屏東科技大學 土木工程系碩士論文,民國九十一年。
    [27] 侯峻棕,"GPS/GIS應用於南橫公路﹝甲仙至埡口段﹞邊坡地工環境災害資料庫系統之建立研究",屏東科技大學 土木工程系碩士論文,民國八十九年。
    [28] 蘇振綱,"地理資訊系統計畫評估方法之研究─以環境地質資料庫為例",國立台灣大學 建築與城鄉研究所碩士論文,民國八十二年。
    [29] 張鉅輝,"混凝土橋梁耐震能力評估與資料庫系統之建立",中華大學 土木工程學系碩士論文,民國九十二年。
    [30] 張瑜晏,"以結構容量震譜為基礎之建築物耐震能力詳細評估輔助系統之建置與應用",國立台灣大學 土木工程學系碩士論文,民國九十一年。
    [31] 趙宜峯,"網路式之橋樑耐震評估系統",台灣科技大學 營建工程系碩士論文,民國九十三年。
    [32] 葉勇凱,蕭輔沛,林金祿,「耐震詳評之ETABS推垮分析」,國家地震工程研究中心校舍之耐震評估與補強講習會,民國九十四年十月。
    [33] 鄧彬斌,"案例式自我學習推理機制及耐震初步評估之應用",台灣大學 土木工程學系博士論文,2005年。
    [34] 盧中強,"鋪面路網資料庫與地理資訊化系統架構之研究",淡江大學 土木工程學系碩士論文,民國九十年。
    [35] DOM, “Document Object Model”, < http://www.w3.org/DOM/>
    [36] MathML, “W3C Math Home”, <http://www.w3.org/Math/>, released on February 21, 2001.
    [37] SVG, “Scalable Vector Geaphics”, <http://www.w3.org/Graphics/SVG/>.
    [38] Web 3D, “Web 3D Consortium”, <http://www.web3d.org/> .
    [39] XML, “Extensible Markup Language”, < http://www.w3.org/XML/> .

    QR CODE