簡易檢索 / 詳目顯示

研究生: 黃鑫弘
Sing-Houg Huang
論文名稱: 射彈在顆粒矩陣的動力行為
Dynamics of projectile in granular matrix
指導教授: 陳明志
Ming-Jyh Chern
口試委員: 孫珍理
Chen-li Sun
蘇裕軒
Yu-Hsuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 94
中文關鍵詞: 高速攝影技術顆粒碰撞耗散率衰減率
外文關鍵詞: speed photography, particle, collide, decay rate, decay time
相關次數: 點閱:215下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用高速攝影技術並架設兩種實驗對二維顆粒的碰撞進行研究。
實驗一是利用不鏽鋼珠,控制於某一固定高度,並使其沿著阻礙物自由落下至玻璃平板上進行碰撞,進而觀察顆粒的能量耗散。當顆粒在玻璃平台上互相碰撞時,其能量的變化為E = E_0*e^{-r_d*tau}, (E為平均顆粒的能量、E_0為平均顆粒的能量初始能量、r_d為耗散率、tau為平均顆粒累加碰撞數)。而從實驗中可以得到r_d約為0.73,另外由電腦模擬得到的r_d約為0.23,因此可知道實驗中顆粒的能量消散比模擬的結果還要快,其原因可能是在實驗裡,顆粒與玻璃平台之間有互相作用所造成的。

實驗二則使用射彈去撞擊由不鏽鋼珠所組成的顆粒矩陣,而顆粒矩陣為間距為L的二維方形晶格。
實驗中,射彈會用不同的入射速度(u_{0x})碰擊顆粒矩陣,可以發現射彈在顆粒矩陣中的速度為u_x = u_(0x)*e^(-Gamma*t)(Gamma為衰減率)。
當射彈以對稱非中心去碰撞顆粒矩陣的第一排時,可以發現衰減率(Gamma)會隨入射速度(u_(0x))增加而變小,且可找到Gamma = a-bu_(0x);而從碰撞原理推導的經驗方程式中,也可以算出a和b,最後可發現,理論結果和實驗很接近。


We study the energy dissipation of two-dimensional granular gas using a high speed photography. In the first experiment, stainless steel spheres are used to fall along the inside wall of a hemispheric shell into a horizontal plate where they collid with each other and the average kinetic energy per particle was measured.
We find that the average kinetic energy per particle (E) of the granular gas decaies exponentially in E = E_0*e^{-r_d*tau} and decay rate(r_d) is predicted 0.7.
However, in computer simulation, decay rete(r_d) is about 0.23. We find that energy dissipates more rapidly in the experimental systems than that of the simulation, due in large part to the interactions of the particles with surface and glass baffle.
In the second experiment, we use a projectile at various inlet velocities (u_(0x)) and positions(b) to collided granular matrix which comprises stainless steel spheres.
We find that velocity of projectile (u_x) decaies exponentially in u_x = u_(0x)*e^{Gamma*t} where Gamma is decay time.
In the case of b = 2.75 mm, decay time decreases with the increasing of inlet velocity and a fitted formula is found, Gamma = a-b*u_(0x). Finally, we find that theoretical and experimental results for decay time are very close.

中文摘要 英文摘要 致謝 目錄 符號索引 圖目錄 1 導論 1.1 研究動機 1.2 文獻回顧  1.3 論文架構 2 理論模型 2.1 線動量與動量原理 2.2 線動量變化率 2.3 衝擊運動 2.4 碰撞 2.4.1 直接中心碰撞  2.4.2 傾斜中心碰撞 2.5 小結 3 實驗儀器設備及方法 3.1 設備及方法 3.2 顆粒氣體之碰撞實驗的設備及實驗方法 3.2.1 實驗設備 3.2.2 實驗方法 3.3 射彈在顆粒矩陣之碰撞實驗的設備及實驗方法 3.3.1 實驗設備 3.3.2 實驗方法 3.4 顆粒追蹤法 4 結果與分析 4.1 顆粒氣體之碰撞實驗的結果 4.1.1 實驗結果 4.1.2 模擬結果 4.2 顆粒氣體之碰撞實驗小結 4.3 射彈在顆粒矩陣之碰撞實驗的結果 4.3.1 入射速度和碰撞點對射彈的影響 4.3.2 經驗方程式 4.3.3 比較經驗方程式與實驗的衰減率 4.4 壓力式碰碰撞實驗小結 5 結論與建議 5.1 結論 5.2 建議 參考文獻

1. Jadger, H.M., and Nagel, S.R., 1996, Granular solids,liquids, and gases. Revires of Modern Physics 68, 1259-1273.

2.McNamara, S., and Young, W.R., 1964, Inelastic collapse in two dimensions. Physical Review E 50, 28.

3.Painter, B., Meenakshi, D., and Behringer, R.P., 1996, Energy dissipation and clustering for a cooling granular material on a substrate. 175, 93-127.

4.Painter, B., and Behringer, R.P., 2000, Dynamics fo two-particle collisions on a surface. Physical Review E 62, 2380-2387.

5.Dutt, M., and Behringer, R.P., 2004, Effects of surface friction on a two-dimensional granular system: Cooling bound system. Physical Review E70, 061304(1-4).

6.Brilliantov, N.V., and Poschel, T., 1999, Rolling as a "continuing collision". European Physical Journal B 12, 299-301.

7.Zhou, T., 1998, Effects of attractors on the dynamics of granular systems. Physical Review Letters 80, 3755-3758.

8.Grossman, E.L., Zhou, T. and Ben-Naim, E., 1997, Towards granular hydrodynamics in two dimensions. Physical Review E 55, 4200-4206.

9.Hou, M., Peng, Z., Lu, K., and Chan, C.K., 2005, Dynamics of a projectile penetratingin granular systems. Physical Review E 72, 062031(1-4).

10.Pica Ciamarra, M., Lara, A.H., Lee, A.T., and Goldman, D.I., 2005, Dynamics of drag and force distribution for projectile impact in a granular medium. Physical Review Letters 92, 194301(1-4).

11.Puglisi, A., Leoreto, V., Petri, A., and Vulpiani, A., 1998, Clustering and Non-Gaussian Behavior in Granular Matter. Physical Review Letters 81, 18.

12.Goldhirsch, I., Zanetti, G., 1993, Clustering instability in dissipative gases . {\it Physical Review Letters 70, 11.

13.Painter, B., and Behringer, R.P., 2000, Substrate interactions, effects of summertry, and convection in a 2D Horizontally shaken granular system. Physical Review Letters 85, 16.

14.Kudrolli, A., Wolpert, M., and Gollub, J.P., 1997, Cluster formation due to collisions in granular material.Physical Review Letters 78, 7.

15.Kondic, L., 1999, Dynamics of spherical particles on a surface: Collision-induced sliding and other effects. Physical Review Letters 78, 7.

16.Newhall, K.A., and Durian, D.J., 2003, Projectile-shape dependence of impact craters in loose granular media. Physical Review E 68, 060301.

17.To, K., 2005, Jamming transition in two-dimensional hoppers and silos. Physical Review E 71, 060301.

18.To, K., 2002, Jamming pattern in a two-dimensional hopper. Physical Review E 66, 011308.

19To, K., 2001, Jamming of granular flow in a two-dimensional hopper. Physical Review Letters 86, 71-74.

QR CODE