簡易檢索 / 詳目顯示

研究生: 黃科竣
Ke-Jun Huang
論文名稱: 以無跡卡爾曼濾波器為基礎實現超級電容充電狀態、溫度及剩餘壽命之即時估測
UKF-based Estimation of the Ultracapacitor State of Charge (SOC), Temperature and Remaining Useful Life (RUL)
指導教授: 姜嘉瑞
Chia-Jui Chiang
口試委員: 蔡大翔
Dah-Shyang Tsai
黃仲欽
nono
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 135
中文關鍵詞: 超級電容即時估測擴展型卡爾曼濾波器無跡卡爾曼濾波器老化模型
外文關鍵詞: Ultracapacitor, Real time estimation, EKF, UKF, Aging Model
相關次數: 點閱:425下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文以超級電容(ultracapacitor)之等效電路、熱動態以及老化模型為基礎,應用無跡卡爾曼濾波器(unscented Kalman filter, UKF)建構估測器進行超級電容之充電狀態(state of charge, SOC)、溫度及剩餘壽命(remaining useful life, RUL) 之即時估測。論文中分別使用包含溫度及電壓效應和老化效應之兩組超級電容模型進行以無跡卡爾曼濾波器為基礎之估測器開發, 並分別以不同操作溫度、充放電行程及老化情況進行估測器之實驗驗證。測試結果顯示,在處理系統中非線性的問題上,無跡卡爾曼濾波器較擴展型卡爾曼濾波器(extended Kalman filter, EKF)更為有效。


Simultaneous estimation of the state of charge (SOC), temperature and remaining useful life (RUL) of ultracapacitors is achieved in this thesis by applying the unscented Kalman filter (UKF). In implementing the UKF, two sets of ultracapacitor model are used, including one with the voltage and temperature effects and the other with the aging effect. The proposed estimation strategy is validated via experiments in various thermal conditions, charge/discharge cycles and aging processes. The results indicate that the UKF is more effective than the extended Kalman filter (EKF) in dealing with the nonlinearity in the system.

摘要I ABSTRACT II 致謝III 目錄IV 圖目錄VII 表目錄X 1 緒論1 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 等效電路模型文獻回顧. . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 熱效應模型文獻回顧. . . . . . . . . . . . . . . . . . . . . . . 7 1.2.3 儲能元件老化模型文獻回顧. . . . . . . . . . . . . . . . . . . 8 1.2.4 儲能元件估測法則. . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 研究目的與方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4 研究貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 實驗設備與軟體介紹12 2.1 元件介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.1 電容器介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1.2 超級電容器原理. . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 硬體設備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.1 交流阻抗分析儀. . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 直流電子負載機. . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.3 可程式直流電源供應器. . . . . . . . . . . . . . . . . . . . . . 23 2.2.4 可程式恆溫試驗機. . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.5 霍爾元件. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2.6 電阻式溫度感應器. . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.7 數據擷取系統. . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.3 實驗軟體. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.1 MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.2 Simulink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 超級電容模型30 3.1 交流阻抗分析法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 超級電容等效電路模型. . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.1 考慮溫度及電壓效應之模型. . . . . . . . . . . . . . . . . . . 35 3.2.2 考慮老化效應之模型. . . . . . . . . . . . . . . . . . . . . . . 39 3.3 超級電容之熱動態模型及參數鑑別. . . . . . . . . . . . . . . . . . . . 47 3.4 超級電容之熱模型參數鑑別. . . . . . . . . . . . . . . . . . . . . . . 49 3.5 超級電容之老化模型. . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4 卡爾曼濾波器介紹52 4.1 離散之卡爾曼濾波器. . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2 擴展型卡爾曼濾波器. . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3 無跡卡爾曼濾波器. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.4 溫度及電壓效應之離散估測器設計. . . . . . . . . . . . . . . . . . . . 72 4.5 老化效應之離散估測器設計. . . . . . . . . . . . . . . . . . . . . . . 76 5 實驗結果82 5.1 以含溫度及電壓效應模型為基礎之估測結果. . . . . . . . . . . . . . . 82 5.1.1 絕熱狀態之即時估測. . . . . . . . . . . . . . . . . . . . . . . 82 5.1.2 常溫散熱狀態之即時估測. . . . . . . . . . . . . . . . . . . . 85 5.1.3 極低溫狀態之即時估測. . . . . . . . . . . . . . . . . . . . . . 87 5.1.4 使用NYCC 駕駛行程之即時估測. . . . . . . . . . . . . . . . 89 5.2 以含老化效應模型為基礎之估測結果. . . . . . . . . . . . . . . . . . . 92 5.2.1 使用單一循環定電流7A 充電行程之即時估測. . . . . . . . . . 93 5.2.2 使用NYCC 駕駛行程之即時估測. . . . . . . . . . . . . . . . 101 5.3 以兩種模型為基礎所建立估測器之比較. . . . . . . . . . . . . . . . . 109 5.3.1 絕熱狀態之即時估測. . . . . . . . . . . . . . . . . . . . . . . 109 5.3.2 常溫散熱狀態之即時估測. . . . . . . . . . . . . . . . . . . . 111 5.3.3 極低溫狀態之即時估測. . . . . . . . . . . . . . . . . . . . . . 113 5.3.4 使用NYCC 駕駛行程之即時估測. . . . . . . . . . . . . . . . 115 6 結論與未來展望117 6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 參考文獻118

[1] 王衍凱, 以擴張型卡爾曼濾波器為基礎之感應馬達無感測控制及定子轉子阻抗估測,碩士論文,99年,台北.
[2] 李宜達, 控制系統設計與模擬, 第1-1 1-2 頁. 全華科技圖書股份有限公司, 2003.
[3] 佳榮能源科技股份有限公司, http://www.ultra-pack.com/tw/.
[4] 林怡慶, 2009, 超級電容器技術發展與應用趨勢分析(PART1).ARTC 財團法人車輛測試研究中心.
[5] 祝毓, 二次電池技術的發展及其比較. 電池工業,2009.
[6] 康維(B. E. Conway), 陳艾、吳孟強、張緒禮、高能武等譯, 電化學超級電容器-科學原理及技術應用. 化學工業出版社,2005.
[7] 張永瑞、謝錦隆, 再生能源HCPV.SOFC 高功率電力調控系統研製報告技術, 核能研究所,2009.
[8] 張智星, MATLAB 程式設計與應用, 第1-2 1-5 頁. 清蔚科技股份有限公司.
[9] 曹楚南、張鑒清, 電化學阻抗譜導論. 科學出版社, 2002.
[10] 黃韋融, 超級電容非線性老化行為模式之建模, 碩士論文,103年, 台北.
[11] 鄭文欽, 含熱效應之超級電容等效電路模型, 碩士論文,100年, 台北.
[12] R. Kぴotz and M. Carlen, “Principles and applications of electrochemical capacitors,” Electrochimica Acta, vol. 45, pp. 2483–2498, 2000.
[13] A. G. Pandolfo and A. F. Hollenkamp, “Carbon properties and their role in supercapacitors,” Journal of Power Sources, vol. 157, pp. 11–27, April 2006.
[14] M. Specialties, resistance Temperature Detectors:PT-100.
[15] E. Barsoukov and J. R. Macdonald, “Impedane spectroscopy theory, experiment and applications,” Wiley-Interscience.
[16] D. K. S. Buller, E. Karden and R. W. D. Doncker, “Temperature behavior and impedance fundamentals of supercapacitors,” IEEE Transactions on Industry Applications, vol. 154, pp. 550–555, 2005.
[17] D. U. S. Oliver Bohlen, Julia Kowal, “Ageing behaviour of electrochemical double layer capacitors part ii. lifetime simulation model for dynamic applications,” Journal of Power Sources, vol. 173, 626-632 2007.
[18] T. Group, tPLS-100F-Electric Double Layer Capacitor (EDLC): PowerBurstR Ultracapacitor.
[19] R. E. Sonntag, C. Borgnakke, and G. J. V. Wylen, “Fundamentals of thermodynamics,” SIXTH EDITION, 2009.
[20] S. R. F. Belhachem and B. Davat, “A physical based model of power electric double-layer supercapacitors,” Industry Applications Conference IEEE, vol. 5, pp. 3069–3076, 2000.
[21] R. L. Spyker and R. M. Nelms, “Classical equivalent circuit parameters for a double-layer capacitor,” IEEE Transactions on Aerospace and Electronic Systems, vol. 36, pp. 829–836, 2000.
[22] L. Zubieta and R. Bonert, “Characterization of double-layer capacitors for power electronics applications,” IEEE Transactions on Industry Applications, vol. 36, January-February 2000.
[23] D. K. S. Buller, E. Karden and R. W. D. Doncker, “Modeling the dynamic behavior of supercapacitors using impedance spectroscopy,” IEEE Transactions on Industry Applications, vol. 38, pp. 1622–1626, November-Decembe 2002.
[24] A. B. H. Gualous, D. Bouquain and J. M. Kaffmann, “Experimental study of supercapacitor serial resistance and capacitance variations with temperature,” Jourual of power Sources, vol. 123, pp. 86–93, 2003.
[25] M. H. R. Kぴotz and R. Gallay, “Temperature behavior and impedance fundamentals of supercapacitors,” Journal of Power Sources, vol. 154, pp. 550–555, 2005.
[26] D. L. J. Schiffer and D. U. Sauer, “Heat generation in double layer capacitors,” Journal of Power Sources, vol. 160, pp. 765–772, February 2006.
[27] E.Peled, J.Electrochem.Soc., vol. 126, pp. 2047–2051, 1979.
[28] R. H.J.Ploehn, P.Ramadass, J.Electrochem.Soc., vol. 151, pp. 456–462, 2004.
[29] S. C. H. T. J. T.Yoshida, M.Takahashi, J.Electrochem.Soc., vol. 153, pp. 576–582, 2006.
[30] P. P. K. R. M.Broussely, S.Herreyre, J.Power Sources, vol. 97.
[31] T. H. Kohei Honkura, Ko Takahashi, “Capacity-fading prediction of lithium-ion batteries based on discharge curves analysis,” J.Power Sources, vol. 196, pp. 10 141–10 147, 2011.
[32] D. U. S. Oliver Bohlen, Julia Kowal, “Ageing behaviour of electrochemical double layer capacitors part i. experimental study and ageing model,” Journal of Power Sources, vol. 172, pp. 468–475, 2007.
[33] J. V. S. K. F. H. P. D. D. U. S. Madeleine Ecker, Jochen B. Gerschler, “Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data,” Journal of Power Sources, vol. 215, pp. 248–257, 2012.
[34] P. S. T. A. D. E. R. Alvun J. Salkind, Craig Fennie, “Determination of state-of-change and state-of-health of batteries by fuzzy logic methodology,” Journal of Power Sources, vol. 80, pp. 293–300, 1999.
[35] Y.-P. C. Kong Soon Ng, Chin-Sien Moo and Y.-C. Hsieh, “Enhanced coulomb counting method for estimating state-of-charge and state-of health of lithium-ion batteries,” Applied Energy, vol. 86, pp. 1506–1511, 2009.
[36] T. P. Chao Hu, Gaurav Jain and T. Gorka, “Method for estimating capacity and predicting remaining useful life of lithium-ion battery,” Applied Energy.
[37] P. S.-T. A. D. E. R. Alvun J. Salkind, Craig Fennie, “Determination of state-of-change and state-of-health of batteries by fuzzy logic methodology,” Journal of Power Sources, vol. 80, pp. 293–300, 1999.
[38] A. J. Sabine Piller, Marion Perrin, “Methods for state-of-charge determination and their applications,” Journal of Power Sources, vol. 96, pp. 113–120, 2001.
[39] C. C. W. K.T.Chau, K.C. Wu, “A new battery capacity indicator for nickel-metal hydride battery powered electric vehicles using adaptive neuro-fuzzy inference system,” Energy Conversion and Management, vol. 44, pp. 2059–2071, 2002.
[40] G. L. Plett, “Extended kalman filtering for battery management systems of lipb-based hev battery packs part 1. background,” Journal of Power Sources, vol. 134, pp. 252–261, 2004.
[41] M. S. Jaehyun Han, Dongchul Kim, “State-of-charge estimation of lead-acid batteries using an adaptive extended kalman filter,” Journal of Power Sources, vol. 188, pp. 606–612, 2009.
[42] H. H. G. Hongwen He, Rui Xiong, “Online estimation of model parameters and state-of-change of lifepo4 batteries in electric vehicles,” Applied Energy, vol. 89, pp. 413–420, 2012.
[43] C. C. M. P. Wei He, Nicholas Williard, “State of charge estimation for electric vehicle batteries using unscented kalman filtering,” Microelectronics Reliability, vol. 53, pp. 840–847, 2013.
[44] T. Group, http://www.tecategroup.com/.
[45] S. L. J.-S. Lai and M. F. Rose, “High energy density double-layer capacitors for energy storage applications,” IEEE Aes Magazine, vol. 77, pp. 14–19, 1992.
[46] A. B. H. Gualous, D. Bouquain and J. M. Kauffmann, “Experimental study of supercapacitor
serial resistance and capacitance variations with temperature,” Jourual of Power Sources, vol. 123, pp. 86–93, 2003.
[47] M. H. R. Kぴotz and R. Gallay, “Modeling the dynamic behavior of supercapacitors using impedance spectroscopy,” Journal of Power Sources, vol. 38, pp. 1622–1626, 2002.
[48] T. H. V. J. K. K. B. K. M. O. S. S. T.Markel, A. Brooker and K.Wipke, “A systems analysis tool for advanced vehicle modeling,” Jourual of Power Sources, vol. 110, pp. 255–266, 2002.

QR CODE