簡易檢索 / 詳目顯示

研究生: 陳咨光
Tzu-Kuang Chen
論文名稱: 集成式學習模型應用於材料滲氮製程多品質預測
Ensemble Learning Model Applied to the Qualities Prediction of Material Nitriding Processing
指導教授: 郭俞麟
Yu-Lin Kuo
柯坤呈
Kun-Cheng Ke
口試委員: 郭俞麟
Yu-Lin Kuo
柯坤呈
Kun-Cheng Ke
梁書豪
Shu-Hao Liang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 101
中文關鍵詞: 滲氮製程多品質預測集成式學習自動化檢測
外文關鍵詞: Nitriding process, Multi-quality objectives, Ensemble learning, Automated detection
相關次數: 點閱:204下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

常壓電漿氮化技術具有高效、低能耗和低成本等優勢。此外,該技術還具有處理效率高、處理後表面平整度好以及處理後材料變形小等優點。儘管常壓電漿加工具有快速加工的優勢,但後續加工結果的量測卻需要耗費大量時間成本。此外,對於特定加工結果所需的加工參數,僅能依靠過往經驗分析,不利於準確地符合所需加工品質的預期。
基於上述情況,本研究提出了一種基於人工智慧的加工品質預測方法,通過資料前處理增強資料以及待預測結果的相關性增強模型的預測性能表現,並藉由集成式學習結合各種增強模型預測性能的方法進而預測不同材料的氮化層厚度和加工後材料硬度。
兩種集成式學習之AISI D2氮化層厚度預測最大偏差分別為6.846%以及5.354%,SS304氮化層厚度預測最大偏差分別為12.376%以及11.95%,AISI D2加工後硬度預測最大偏差為5.882%以及7.259%,SS304加工後硬度預測最大偏差為8.329%以及8.62%。研究結果表明,該模型能夠準確預測材料的加工品質,並且能夠自動從資料集中提取對於預測模型訓練有利的特徵並僅須5秒便可取得實際加工品值結果,具有提高生產效率的特點。
常壓電漿氮化技術具有高效、低能耗和低成本等優勢。此外,該技術還具有處理效率高、處理後表面平整度好以及處理後材料變形小等優點。儘管常壓電漿加工具有快速加工的優勢,但後續加工結果的量測卻需要耗費大量時間成本。此外,對於特定加工結果所需的加工參數,僅能依靠過往經驗分析,不利於準確地符合所需加工品質的預期。
基於上述情況,本研究提出了一種基於人工智慧的加工品質預測方法,通過資料前處理增強資料以及待預測結果的相關性增強模型的預測性能表現,並藉由集成式學習結合各種增強模型預測性能的方法進而預測不同材料的氮化層厚度和加工後材料硬度。
兩種集成式學習之AISI D2氮化層厚度預測最大偏差分別為6.846%以及5.354%,SS304氮化層厚度預測最大偏差分別為12.376%以及11.95%,AISI D2加工後硬度預測最大偏差為5.882%以及7.259%,SS304加工後硬度預測最大偏差為8.329%以及8.62%。研究結果表明,該模型能夠準確預測材料的加工品質,並且能夠自動從資料集中提取對於預測模型訓練有利的特徵並僅須5秒便可取得實際加工品值結果,具有提高生產效率的特點。


The atmospheric pressure plasma nitriding technology possesses advantages such as high efficiency, low energy consumption, and low cost. Additionally, this technique offers benefits such as high processing efficiency, improved surface smoothness after treatment, and minimal material deformation. Despite the rapid processing advantages of atmospheric pressure plasma, measuring the results of post-processing requires a significant amount of time and cost. Moreover, determining the specific processing parameters for desired results relies solely on past experience and analysis, which hinders accurate attainment of the expected processing quality.
Given the aforementioned circumstances, this study proposed an artificial intelligence-based method for predicting processing quality. It enhances the predictive performance of the model by preprocessing data and strengthening the correlation with the predicted results. Furthermore, this study employed two ensemble learning approaches, combining various enhanced models' predictive performance to forecast the nitride layer thickness and material hardness after processing for different materials. The maximum deviations in the prediction of AISI D2 nitride layer thickness are 6.846% and 5.354%, while for SS304, they are 12.376% and 11.95%. As for AISI D2 hardness after processing, the maximum deviations are 5.882% and 7.259%, and for SS304, they are 8.329% and 8.62%. The research results demonstrate that this model accurately predicts material processing quality and can automatically extract advantageous features for training the predictive model from the dataset, obtaining actual processing values in just 5 seconds, thereby improving production efficiency.

摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1-1 前言 1 1-2 常壓電漿加工技術 1 1-3 工業4.0 3 1-4 智慧製造 4 1-5 統計預測 6 1-6 機器學習 6 1-7 類神經網路(Artificial Neural Networks, ANN) 11 1-7-1 激勵函數(Activation Function) 12 1-7-2 損失函數(Loss Function) 16 1-7-3 梯度下降法(Gradient Descent) 17 1-7-4 優化器(Optimizer) 18 1-8 研究動機與目的 21 第二章 文獻回顧 23 2-1 表面滲氮處理技術 23 2-2 人工智慧模型預測材料機械性質 24 2-3 人工智慧模型預測氮化加工結果 30 2-4 集成式學習機械性質預測 35 2-5 文獻整體回顧 40 第三章 實驗設計 42 3-1 實驗設計流程圖 42 3-2 實驗設備 44 3-2-1 常壓電漿噴射束(Atmospheric Pressure Plasma Jet, APPJ) 45 3-2-2 電子顯微鏡(Scanning Electron Microscope, SEM) 46 3-2-3 維克氏硬度機(Vickers Hardness Test, HV) 47 3-3 資料前處理 49 3-3-1 資料增量技術 49 3-3-2 資料正規化 50 3-3-3 資料萃取與相關性計算 51 3-4 軟體及計算單元 52 3-5 特徵轉換集成式人工智慧模型 52 3-5-1 特徵轉移模型 53 3-5-2 自動編碼器(Auto-Encoder) 53 3-6 轉移式人工智慧模型 54 3-6-1 轉移式人工智慧架構 55 第四章 研究結果與討論 56 4-1 資料集介紹 56 4-1-1 氮化層厚度、加工硬度資料集 56 4-1-2 資料前處理及資料增強 57 4-2 實驗設置 60 4-2-1 資料劃分 60 4-2-2 預測模型訓練方法 61 4-3 自動編碼器成果 61 4-3-1 編碼數值與品質間之相關性分析 63 4-4 特徵轉換模型成果 65 4-5 集成式特徵轉換模型預測結果分析 68 4-5-1 單材料雙品質之集成式預測結果 69 4-5-2 特徵轉移模型預測結果 71 4-6 轉移學習預測模型結果分析 73 4-6-1 轉移學習架構(MLPTr)討論 74 第五章 結論與未來展望 82 5-1 結論 82 5-2 未來展望 83 參考文獻 84

[1]D. P. Dowling, F. T. O’Neill, S. J. Langlais, and V. J. Law, “Influence of dc Pulsed Atmospheric Pressure Plasma Jet Processing Conditions on Polymer Activation,” Plasma Processes and Polymers, vol. 8, no. 8, pp. 718–727, 2011, doi: 10.1002/ppap.201000145.
[2]M. Donegan, V. Milosavljević, and D. P. Dowling, “Activation of PET Using an RF Atmospheric Plasma System,” Plasma Chem Plasma Process, vol. 33, no. 5, pp. 941–957, Oct. 2013, doi: 10.1007/s11090-013-9474-4.
[3]E. Moritzer, C. Budde, and C. Leister, “Effect of atmospheric pressure plasma pre-treatment and aging conditions on the surface of thermoplastics,” Weld World, vol. 59, no. 1, pp. 23–32, Jan. 2015, doi: 10.1007/s40194-014-0174-3.
[4]Y. Jin, C. Ren, L. Yang, J. Zhang, and D. Wang, “Atmospheric Pressure Plasma Jet in Ar and O2/Ar Mixtures: Properties and High Performance for Surface Cleaning,” Plasma Science and Technology, vol. 15, Nov. 2013, doi: 10.1088/1009-0630/15/12/08.
[5]K. Fricke, H. Steffen, T. von Woedtke, K. Schröder, and K.-D. Weltmann, “High Rate Etching of Polymers by Means of an Atmospheric Pressure Plasma Jet,” Plasma Processes and Polymers, vol. 8, no. 1, pp. 51–58, 2011, doi: 10.1002/ppap.201000093.
[6]M. Crnjac, I. Veža, and N. Banduka, “From Concept to the Introduction of Industry 4.0”.
[7]A. Rojko, “Industry 4.0 Concept: Background and Overview,” International Journal of Interactive Mobile Technologies, vol. 11, no. 5, pp. 77–90, Nov. 2017, doi: 10.3991/ijim.v11i5.7072.
[8]B. P. Santos, F. Charrua-Santos, and T. M. Lima, “Industry 4.0: An Overview,” 2018.
[9]P. Zheng et al., “Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives,” Front. Mech. Eng., vol. 13, no. 2, pp. 137–150, Jun. 2018, doi: 10.1007/s11465-018-0499-5.
[10]P. O’Donovan, K. Leahy, K. Bruton, and D. T. J. O’Sullivan, “An industrial big data pipeline for data-driven analytics maintenance applications in large-scale smart manufacturing facilities,” Journal of Big Data, vol. 2, no. 1, p. 25, Nov. 2015, doi: 10.1186/s40537-015-0034-z.
[11]“Data-driven smart manufacturing | Elsevier Enhanced Reader.” https://reader.elsevier.com/reader/sd/pii/S0278612518300062?token=5C07BF5E763F039CD4CC3340066289E8D107D0F0E4D4759641CCAA11423C6646D17B6D424B7832483AB6D2D6DE0EE76B&originRegion=us-east-1&originCreation=20230415131453 (accessed Apr. 15, 2023).
[12]Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Jan. 1998, doi: 10.1109/5.726791.
[13]I. J. Goodfellow et al., “Generative Adversarial Networks.” arXiv, Jun. 10, 2014. doi: 10.48550/arXiv.1406.2661.
[14]A. L. Samuel, “Some Studies in Machine Learning Using the Game of Checkers,” IBM Journal of Research and Development, vol. 3, no. 3, pp. 210–229, Jul. 1959, doi: 10.1147/rd.33.0210.
[15]A. Shirzadi et al., “A comparative study between popular statistical and machine learning methods for simulating volume of landslides,” CATENA, vol. 157, pp. 213–226, Oct. 2017, doi: 10.1016/j.catena.2017.05.016.
[16]“Comparing conventional statistical models and machine learning in a small cohort of South African cardiac patients | Elsevier Enhanced Reader.” https://reader.elsevier.com/reader/sd/pii/S2352914822002404?token=45D95960AB8EFBA3E93776F7726A7D4EB5798B04BA72DD98D97347AC354B535FC737174E5CF7AF8F5AB323FEBA2BCBB5&originRegion=us-east-1&originCreation=20230423133732 (accessed Apr. 23, 2023).
[17]M. Nalbant, H. Gokkaya, and İ. Toktaş, “Comparison of Regression and Artificial Neural Network Models for Surface Roughness Prediction with the Cutting Parameters in CNC Turning,” Modelling and Simulation in Engineering, vol. 2007, p. e92717, Jun. 2007, doi: 10.1155/2007/92717.
[18]C. Cortes and V. Vapnik, “Support-vector networks,” Mach Learn, vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018.
[19]W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” Bulletin of Mathematical Biophysics, vol. 5, no. 4, pp. 115–133, Dec. 1943, doi: 10.1007/BF02478259.
[20]D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization.” arXiv, Jan. 29, 2017. Accessed: Jul. 28, 2023. [Online]. Available: http://arxiv.org/abs/1412.6980
[21]M. Kopec et al., “Effect of plasma nitriding process on the fatigue and high temperature corrosion resistance of Inconel 740H nickel alloy,” Archiv.Civ.Mech.Eng, vol. 22, no. 1, p. 57, Jan. 2022, doi: 10.1007/s43452-022-00381-0.
[22]J. C. Díaz-Guillén et al., “Improved Mechanical Properties, Wear and Corrosion Resistance of 316L Steel by Homogeneous Chromium Nitride Layer Synthesis Using Plasma Nitriding,” J. of Materi Eng and Perform, vol. 29, no. 2, pp. 877–889, Feb. 2020, doi: 10.1007/s11665-020-04653-9.
[23]J. C. Díaz-Guillén et al., “Duplex plasma treatment of AISI D2 tool steel by combining plasma nitriding (with and without white layer) and post-oxidation,” Surface and Coatings Technology, vol. 385, p. 125420, Mar. 2020, doi: 10.1016/j.surfcoat.2020.125420.
[24]M. Godec, B. Podgornik, A. Kocijan, Č. Donik, and D. A. S. Balantič, “Use of plasma nitriding to improve the wear and corrosion resistance of 18Ni-300 maraging steel manufactured by selective laser melting,” Sci Rep, vol. 11, no. 1, p. 3277, Feb. 2021, doi: 10.1038/s41598-021-82572-y.
[25]Q. Xie, M. Suvarna, J. Li, X. Zhu, J. Cai, and X. Wang, “Online prediction of mechanical properties of hot rolled steel plate using machine learning,” Materials & Design, vol. 197, p. 109201, Jan. 2021, doi: 10.1016/j.matdes.2020.109201.
[26]B. N. Galimzyanov, M. A. Doronina, and A. V. Mokshin, “Machine learning-based prediction of elastic properties of amorphous metal alloys,” Physica A: Statistical Mechanics and its Applications, vol. 617, p. 128678, May 2023, doi: 10.1016/j.physa.2023.128678.
[27]M. S. Ozerdem and S. Kolukisa, “Artificial neural network approach to predict the mechanical properties of Cu–Sn–Pb–Zn–Ni cast alloys,” Materials & Design, vol. 30, no. 3, pp. 764–769, Mar. 2009, doi: 10.1016/j.matdes.2008.05.019.
[28]G. Khalaj, “Artificial neural network to predict the effects of coating parameters on layer thickness of chromium carbonitride coating on pre-nitrided steels,” Neural Comput & Applic, vol. 23, no. 3, pp. 779–786, Sep. 2013, doi: 10.1007/s00521-012-0994-2.
[29]A. F. Yetim, M. Y. Codur, and M. Yazici, “Using of artificial neural network for the prediction of tribological properties of plasma nitrided 316L stainless steel,” Materials Letters, vol. 158, pp. 170–173, Nov. 2015, doi: 10.1016/j.matlet.2015.06.015.
[30]J. Pribbenow, M. Mejauschek, P. Landgraf, T. Grund, G. Bräuer, and T. Lampke, “Neural network for prediction of hardness profiles for steel alloys after plasma nitriding,” IOP Conf. Ser.: Mater. Sci. Eng., vol. 480, no. 1, p. 012019, Feb. 2019, doi: 10.1088/1757-899X/480/1/012019.
[31]A. Zhecheva, S. Malinov, and W. Sha, “Simulation of microhardness profiles of titanium alloys after surface nitriding using artificial neural network,” Surface and Coatings Technology, vol. 200, no. 7, pp. 2332–2342, Dec. 2005, doi: 10.1016/j.surfcoat.2004.10.018.
[32]S. Dean, T. Filetin, I. Zmak, and D. Novak, “Determining Nitriding Parameters with Neural Networks,” Journal of Astm International, vol. 2, May 2005, doi: 10.1520/JAI12213.
[33]D.-C. Feng, W.-J. Wang, S. Mangalathu, G. Hu, and T. Wu, “Implementing ensemble learning methods to predict the shear strength of RC deep beams with/without web reinforcements,” Engineering Structures, vol. 235, p. 111979, May 2021, doi: 10.1016/j.engstruct.2021.111979.
[34]Q.-F. Li and Z.-M. Song, “High-performance concrete strength prediction based on ensemble learning,” Construction and Building Materials, vol. 324, p. 126694, Mar. 2022, doi: 10.1016/j.conbuildmat.2022.126694.
[35] Z. Zhang et al., “An improved stacking ensemble learning model for predicting the effect of lattice structure defects on yield stress,” Computers in Industry, vol. 151, p. 103986, Oct. 2023, doi: 10.1016/j.compind.2023.103986.
[36]https://www.facebook.com/sag.micro, “Scanning Electron Microscope (SEM)- Definition, Principle, Parts, Images - Microbe Notes,” Mar. 11, 2022. https://microbenotes.com/scanning-electron-microscope-sem/ (accessed Jun. 30, 2023).
[37]“Vickers-Hardness-Testing.png (457×261).” https://www.hardnessgauge.com/wp-content/uploads/2020/11/Vickers-Hardness-Testing.png (accessed Apr. 29, 2023).
[38]郭兆渝, “常壓電漿噴射束於回火麻田散鐵鋼表面滲氮處理之製程溫度、時間與硬質層生成相互關係之研究,” 國立臺灣科技大學, 台北市, 2022. [Online]. Available: https://hdl.handle.net/11296/vpm84g
[39]張祐錡, “常壓電漿氮化處理對AISI 304不鏽鋼抗衝擊磨損和耐蝕性能之研究,” 國立臺灣科技大學, 台北市, 2021. [Online]. Available: https://hdl.handle.net/11296/g9v5wm
[40]J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter Optimization”.
[41]J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian Optimization of Machine Learning Algorithms.” arXiv, Aug. 29, 2012. doi: 10.48550/arXiv.1206.2944.
[42]S. Falkner, A. Klein, and F. Hutter, “Practical Hyperparameter Optimization for Deep Learning,” May 2023, Accessed: Jun. 15, 2023. [Online]. Available: https://openreview.net/forum?id=HJMudFkDf
[43]X. He, K. Zhao, and X. Chu, “AutoML: A survey of the state-of-the-art,” Knowledge-Based Systems, vol. 212, p. 106622, Jan. 2021, doi: 10.1016/j.knosys.2020.106622.

無法下載圖示 全文公開日期 2028/08/22 (校內網路)
全文公開日期 2028/08/22 (校外網路)
全文公開日期 2028/08/22 (國家圖書館:臺灣博碩士論文系統)
QR CODE