簡易檢索 / 詳目顯示

研究生: 王瑞霆
Ruei-Ting Wang
論文名稱: 以現場可程式化閘陣列實現鎖相迴路延遲環繞矩陣法及精密相位偏移控制法之高性能數位對時間轉換器
A High-performance FPGA Digital-to-Time Converter based on PLL Delay Matrix and Fine-Phase Shift Control
指導教授: 陳伯奇
Poki Chen
口試委員: 鄭桂忠
Kea-Tiong Tang
陳伯奇
Poki Chen
林昌鴻
Chang-Hong Lin
沈中安
Chung-An Shen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 107
中文關鍵詞: 數位至時間轉換電路延遲產生電路現場可程式化閘陣列鎖相迴路延遲矩陣精密相位偏移PVT變異抗性自動化測試儀器
外文關鍵詞: Digital-to-Time Converter, Delay Generate Circuit, Field Programmable Gate Array, Phase Locked Loops, Delay Matrix, Fine-Phase Shifting, PVT Insensitive, Automatic Test Equipment
相關次數: 點閱:283下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以FPGA平台實現時間轉換器這個領域已經發展了多年,由於近年來物聯網及環境感測器的需求的大幅成長,與該領域相關的研究又以以TDC電路為大宗,在輸出精確時間訊息的DTC電路由於應用上不如TDC豐富,因此對此研究的著墨較少。
    工業應用上常用的ATE系統及BIST技術由於需要十分精準的參考時間源來實現可程式化的時序產生器,因此目前都需要將待側物以大型儀器進行測試。如何能將精準且可程式化的時序產生器微縮至系統甚至是晶片上就成為測試系統研發的重要課題。DTC電路能根據輸入的控制字組產生解析度為皮秒等級的不同時間差,是ATE系統產生時序延遲的核心技術之一。
    在本論文中講述了兩種高精度DTC設計方法,兩者都利用PLL負迴授的特性控制各級延遲量在各種變異下的均一性,目的是在於提升解析度並讓效能更加穩定,使FPGA應用得以更進一步與類比設計匹敵。本論文使用Altera Stratix IV平台所實現的鎖相迴路延遲環繞矩陣法DTC可達到最高5.2 ps之時間解析度,且其差分非線性誤差(DNL)、積分非線性誤差(INL)及輸出抖動表現分別只有 -2.3 ~ 2.4 LSB、 -1.8 ~ 1.8 LSB及2.3 LSB,比現極為出色。使用 Xilinx Virtex-6平台實現的精密相位偏移控制法DTC可達到最高14.8 ps之時間解析度,且DNL、INL及輸出抖動表現分別為 -0.6 ~ 0.8 LSB、 -0.4 ~ 0.7 LSB及0.8 LSB ,預計將對ATE系統與BIST的研發產生極大助益。


    Timing Converter has been developed for quite many years due to the increasing demand of Internet-of-Things (IoT) and environmental sensors. However, the focus on the related field is always on Time-to-Digital Converter (TDC) design. The research on Digital-to-Time Converter (DTC) design which can generate precise timing information is not as popular as TDC.
    In the industry, Automatic Test Equipment (ATE) and Built-In Self-Test (BIST) technology are commonly used. Both of them need a high precision reference clock and a programmable timing generator. Usually, they need some bulky instruments for support. Delay timing generation is a critical feature for ATE or BIST. The accurate programmable delay generator such as DTC can be the first developed core of miniature ATE on a system or BIST on a single chip.
    In this thesis, a precise phase division DTC, or digital pulse generator, based on phase-locked loop (PLL) delay matrix is proposed to further extend FPGA applications into the analog domain. Most delay elements in delay matrix are controlled by PLLs so that output phases are uniformly distributed within reference clock period. For concept proof and proposal evaluation, the proposed DTC based PLL delay matrix is implemented with Altera Stratix IV FPGA and the achieved resolution is as high as 5.2ps with -2.3 ~ 2.4 LSB differential nonlinearity (DNL), -1.8 ~ 1.8 LSB integral nonlinearity (INL) and 2.3 LSB jitter performance respectively. Another realized DTC with much simpler structure based on fine-phase shift control is implemented on Xilinx Virtex-6 FPGA. A 14.8ps resolution is accomplished with -0.6 ~ 0.8 LSB DNL, -0.4 ~ 0.7 LSB INL and 0.8 LSB jitter performance. It will substantially benefit the development of ATE and BIST.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 研究動機 1 1-2 論文架構 2 第二章 數位對時間轉換器 3 2-1 簡介 3 2-2 以延遲線為基礎之DTC 4 2-3 計數器法DTC 6 2-4 延遲矩陣式DTC 7 2-5 輔以延遲鎖定電路之延遲矩陣式DTC 9 2-6 游標卡尺計數器DTC 10 2-6 精密相位分割技術 12 第三章 本論文所提出之DTC電路架構及其周邊電路原理與介紹 20 3-1 以高精度相位分割技術實現之DTC 20 3-2 雙倍資料傳輸率 22 3-3 使用動態相移功能實現之高精度DTC 23 3-4 粗級DTC 27 3-5 UART 31 3-6 CRC驗證邏輯 34 3-7 內嵌於FPGA晶片內之鎖相迴路簡介 35 3-8 精密相位偏移控制法 38 3-9 控制字組暫存器 39 第四章 量測與校正考量及其軟硬體及流程 42 4-1 FPGA開發平台簡介 42 4-2 FPGA開發平台簡介 43 4-3 在Xilinx平台實現鎖相迴路矩陣之問題 46 4-4 位元大小校正 48 4-5以隨機延遲機制提升解析度 53 4-6 介穩態(Metastable) 55 4-7 校正與正規化 57 4-7 DTC控制軟體 64 第五章 實驗量測結果 65 5-1 量測儀器簡介 65 5-2量測環境的建立 67 5-3 SikuliX量測自動化 68 5-4 量測結果 70 5-4.1 細級量測(Fine Stage Measurement) 71 5-4.2 中級量測(Mid Stage Measurement) 77 5-4.3 粗級量測(Coarse Stage Measurement) 83 5-4 量測結果小結 88 第六章 總結及未來展望 90 參考文獻 94

    [1] J. Chapman, J. Currin, and S. Payne, "A low-cost high-performance CMOS timing vernier for ATE," in Proceedings of 1995 IEEE International Test Conference (ITC), 1995, pp. 459-468.
    [2] Y. Miyake, S. Kajihara, and P. Chen, "On-Chip Test Clock Validation Using A Time-to-Digital Converter in FPGAs," in 2019 IEEE International Test Conference in Asia (ITC-Asia), 2019, pp. 157-162.
    [3] Keysight Technologies. (2015). Keysight 81133A/81134A Pulse Generator User’s Guide. Available: http://literature.cdn.keysight.com/litweb/pdf/5988-7401EN.pdf
    [4] X. Lin and M. Kassab, "Test Generation for Designs with On-Chip Clock Generators," in 2009 Asian Test Symposium, 2009, pp. 411-417.
    [5] F. Baronti, L. Fanucci, D. Lunardini, R. Roncella, and R. Saletti, "A high-resolution DLL-based digital-to-time converter for DDS applications," in Proceedings of the 2002 IEEE International Frequency Control Symposium and PDA Exhibition (Cat. No.02CH37234), 2002, pp. 649-653.
    [6] J. Chapman, "High-performance CMOS-based VLSI testers: timing control and compensation," in Proceedings International Test Conference 1992, 1992, p. 59.
    [7] J. A. Gasbarro and M. A. Horowitz, "Integrated pin electronics for VLSI functional testers," IEEE Journal of Solid-State Circuits, vol. 24, no. 2, pp. 331-337, 1989.
    [8] T. Otsuji and N. Narumi, "A 10-ps resolution, process-insensitive timing generator IC," IEEE Journal of Solid-State Circuits, vol. 24, no. 5, pp. 1412-1417, 1989.
    [9] T. Otsuji and N. Narumi, "A 3-ns range, 8-ps resolution, timing generator LSI utilizing Si bipolar gate array," IEEE Journal of Solid-State Circuits, vol. 26, no. 5, pp. 806-811, 1991.
    [10] C. Branson, D. Murray, and S. Sullivan, "Integrated pin electronics for a VLSI test system," in International Test Conference 1988 Proceeding@m_New Frontiers in Testing, 1988, pp. 23-27.
    [11] ON Semiconductor. (2016). MC10E195 Datasheet (11 ed.). Available: https://www.mouser.com/datasheet/2/308/MC10E195-D-95728.pdf
    [12] J. Christiansen, "An integrated high resolution CMOS timing generator based on an array of delay locked loops," IEEE Journal of Solid-State Circuits, vol. 31, no. 7, pp. 952-957, 1996.
    [13] Ji-Wei Yan, "High Accuracy Digital-to-Time Converter with Dual PLLs," MSc, Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, 2008.
    [14] P. Chen, J. Lai, and Y. Chen, "FPGA Vernier Digital-to-Time Converter With 1.58 ps Resolution and 59.3 Minutes Operation Range," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 6, pp. 1134-1142, 2010.
    [15] Altera Corporation. (2016). Stratix IV Device Handbook. Available: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-iv/stratix4_handbook.pdf
    [16] P. Chen, J. Lan, R. Wang, N. My Qui, J. C. J. S. Marquez, S. Kajihara, and Y. Miyake, "High-Precision PLL Delay Matrix With Overclocking and Double Data Rate for Accurate FPGA Time-to-Digital Converters," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28, no. 4, pp. 904-913, 2020.
    [17] J. Y. Won, S. I. Kwon, H. S. Yoon, G. B. Ko, J. Son, and J. S. Lee, "Dual-Phase Tapped-Delay-Line Time-to-Digital Converter With On-the-Fly Calibration Implemented in 40 nm FPGA," IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 1, pp. 231-242, 2016.
    [18] Nian-Ru Wu, "FPGA Digital-to-Time Converter Based on Dual PLLs and Double Data Rate," MSc, Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, 2017.
    [19] Altera Corporation. (2017). ALTPLL (Phase-Locked Loop) IP Core User Guide. Available: https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_altpll.pdf
    [20] Xilinx Inc. (2014). Virtex-6 FPGA Clocking Resources User Guide (v2.5 ed.). Available: https://www.xilinx.com/support/documentation/user_guides/ug362.pdf
    [21] S. S. Junnarkar, P. O' Connor, P. Vaska, and R. Fontaine, "FPGA-Based Self-Calibrating Time-to-Digital Converter for Time-of-Flight Experiments," IEEE Transactions on Nuclear Science, vol. 56, no. 4, pp. 2374-2379, 2009.
    [22] P. Chen, M. Shie, Z. Zheng, Z. Zheng, and C. Chu, "A Fully Digital Time-Domain Smart Temperature Sensor Realized With 140 FPGA Logic Elements," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 12, pp. 2661-2668, 2007.
    [23] Xilinx Inc. (2014). Virtex-6 FPGA Data Sheet: DC and Switching Characteristics (v3.6 ed.). Available: https://www.xilinx.com/support/documentation/data_sheets/ds152.pdf
    [24] Song Jian, An Qi, and Liu Shubin, "A high-resolution time-to-digital converter implemented in field-programmable-gate-arrays," IEEE Transactions on Nuclear Science, vol. 53, no. 1, pp. 236-241, 2006.
    [25] Wu Jinyuan, Shi Zonghan, and I. Y. Wang, "Firmware-only implementation of time-to-digital converter (TDC) in field-programmable gate array (FPGA)," in 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515), 2003, vol. 1, pp. 177-181 Vol.1.
    [26] H. Zhang, X. Li, and Y. Bian, "High-Resolution and Multi-Channel Time Interval Counter Using Time-to-Digital Converter and FPGA," in 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, 2007, pp. 1324-1326.
    [27] M. S. Andaloussi, M. Boukadoum, and E. M. Aboulhamid, "A novel time-to-digital converter with 150 ps time resolution and 2.5 ns pulse-pair resolution," in The 14th International Conference on Microelectronics, 2002, pp. 123-126.
    [28] Y. Chen, "A high resolution FPGA-based merged delay line TDC with nonlinearity calibration," in 2013 IEEE International Symposium on Circuits and Systems (ISCAS), 2013, pp. 2432-2435.
    [29] M. Fishburn, L. H. Menninga, C. Favi, and E. Charbon, "A 19.6 ps, FPGA-Based TDC With Multiple Channels for Open Source Applications," IEEE Transactions on Nuclear Science, vol. 60, no. 3, pp. 2203-2208, 2013.
    [30] J. Kalisz, R. Szplet, J. Pasierbinski, and A. Poniecki, "Field-programmable-gate-array-based time-to-digital converter with 200-ps resolution," IEEE Transactions on Instrumentation and Measurement, vol. 46, no. 1, pp. 51-55, 1997.
    [31] J. Kalisz, R. Szplet, R. Pelka, and A. Poniecki, "Single-chip interpolating time counter with 200-ps resolution and 43-s range," IEEE Transactions on Instrumentation and Measurement, vol. 46, no. 4, pp. 851-856, 1997.
    [32] R. B. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg, and P. T. Balsara, "1.3 V 20 ps time-to-digital converter for frequency synthesis in 90-nm CMOS," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 3, pp. 220-224, 2006.
    [33] R. Szplet and K. Klepacki, "An FPGA-Integrated Time-to-Digital Converter Based on Two-Stage Pulse Shrinking," IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 6, pp. 1663-1670, 2010.
    [34] J. Wang, S. Liu, Q. Shen, H. Li, and Q. An, "A Fully Fledged TDC Implemented in Field-Programmable Gate Arrays," IEEE Transactions on Nuclear Science, vol. 57, no. 2, pp. 446-450, 2010.
    [35] J. Wu and Z. Shi, "The 10-ps wave union TDC: Improving FPGA TDC resolution beyond its cell delay," in 2008 IEEE Nuclear Science Symposium Conference Record, 2008, pp. 3440-3446.
    [36] Xilinx Inc. (2014). Virtex-6 Family Overview (v2.5 ed.). Available: https://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
    [37] Tektronix Inc. (2009). Digital Phosphor Oscilloscopes/Digital Serial Analyzers DPO/DSA70000 Series Data Sheet. Available: https://download.tek.com/datasheet/4HW_19377_15_0.pdf
    [38] Tektronix Inc. (2018). Digital Phosphor Oscilloscopes DPO7000 Series Datasheet. Available: https://download.tek.com/datasheet/DPO7000C-Oscilloscope-Datasheet-48W2654321.pdf
    [39] P. Kwiatkowski, Z. Jachna, K. Różyc, and J. Kalisz, "Accurate and low jitter time-interval generators based on phase shifting method," Review of Scientific Instruments, vol. 83, no. 3, p. 034701, 2012/03/01 2012.
    [40] Ke Cui, Xiangyu Li, and Rihong Zhu, "A high-resolution programmable Vernier delay generator based on carry chains in FPGA," Review of Scientific Instruments, vol. 88, no. 6, p. 064703, 2017/06/01 2017.
    [41] Yuan Yao, Zhaoqi Wang, Houbing Lu, Lian Chen, and Ge Jin, "Design of time interval generator based on hybrid counting method," Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 832, pp. 103-107, 2016/10/01/ 2016.
    [42] I. Vornicu, R. Carmona-Galán, and A. Rodríguez-Vázquez, "Wide range 8ps incremental resolution time interval generator based on FPGA technology," in 2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS), 2014, pp. 395-398.
    [43] M. Zhang, H. Wang, and Y. Liu, "Digital-to-Time Converter with 3.93 ps Resolution Implemented on FPGA Chips," IEEE Access, vol. 5, pp. 6842-6848, 2017.
    [44] P. Kwiatkowski and R. Szplet, "Digital-to-time converter with pulse train generation capability," in 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 2018, pp. 1-6.
    [45] Xilinx Inc. (2019). UltraScale Architecture Clocking Resources User Guide (v1.9 ed.). Available: https://www.xilinx.com/support/documentation/user_guides/ug572-ultrascale-clocking.pdf

    無法下載圖示 全文公開日期 2025/08/13 (校內網路)
    全文公開日期 2030/08/13 (校外網路)
    全文公開日期 2025/08/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE