簡易檢索 / 詳目顯示

研究生: 王良宜
Liang-Yi Wang
論文名稱: 製備以羧甲基纖維素為基材之材料及其應用
Preparation of Carboxymethyl Cellulose Based Materials for Potential Applications
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 王勝仕
Sheng-Shih Wang
林析右
Shi-Yow Lin
陳克紹
Ko-Shao Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 108
中文關鍵詞: 羧甲基纖維素聚乙烯醇聚(N-異丙基丙烯醯胺)重金屬冷凍解凍大氣電漿電子束
外文關鍵詞: Carboxymethyl cellulose (CMC), Poly(vinyl alcohol) (PVA), Poly(N-isopropylacrylamide) (pNIPAAm), Heavy metal ions, Freeze-thawed, Atmospheric pressure plasma (APPJ)
相關次數: 點閱:323下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

羧甲基纖維素 (carboxymeethyl cellulose, CMC) 為纖維素的衍生物,為一具有生物相容性的材料。本論文利用羧甲基纖維素做為基材,製備三種不同的型式的羧甲基纖維素材料並應用於不同的領域。本論文包含三個部分,分別為: 製備不溶於水的羧甲基纖維素薄膜及金屬複合物 (composite) 應用於抗菌研究、製備聚乙烯醇 (poly(vinyl alcohol), PVA)/羧甲基纖維素水膠,應用於去除重金屬,以及利用大氣電漿電子束 (atmospheric pressure plasma jet, APPJ) 製備羧甲基纖維素/聚 (N-異丙基丙烯醯胺) (poly(N-isopropylacrylamide), pNIPAAm)共聚物 (copolymers)。
於第一部分的研究中,利用酸化的方式可改變原溶於水的羧甲基纖維素薄膜成為不溶於水的薄膜。實驗結果顯示,羧甲基纖維素薄膜具有吸附及還原金屬的能力。因此,本研究利用羧甲基纖維素薄膜吸附銀,製備銀/羧甲基纖維素的複合膜用於對大腸桿菌 (Escherichia coli, E. coli)的抗菌研究。實驗結果顯示,當羧甲基纖維素膜上含有高於1.76 µg/mm2的銀粒子,則具有良好的抗菌效果。
在第二部分的實驗中,利用冷凍-解凍 (freeze-thawed) 法製備聚乙烯醇/羧甲基纖維素水膠用應用於金屬的吸附。實驗結果指出,本方法所製備出的水膠含有高於 71% 不溶於水的成分。此外,研究中討論聚乙烯醇和羧甲基纖維素的比例對吸附重金屬的影響。由感應耦合電漿 (inductively coupled plasma, ICP) 的定量結果可知,P2C1水膠 (含 2/3 的聚乙烯醇及 1/3 羧甲基纖維素) 對銀有最好的吸附能力 (吸附量為 8.4 mg 銀/g 水膠)。另一方面,本研究也應用P2C1水膠吸附不同的種類的金屬離子,包括:銀、鎳、銅及鋅等。除了可應用於吸附外,實驗結果指出聚乙烯醇/羧甲基纖維素水膠具有還原金屬的能力。
第三部分的實驗為利用大氣電漿電子束合處理含水性的單體,製備具溫度敏感性的羧甲基纖維素/聚 (N-異丙基丙烯醯胺) 共聚物。本研究除了提出可能的合成機制外,也最適化電漿的參數,包括使用的功率及電子束的掃描次數。由傅里葉轉換紅外線光譜儀 (Fourier transform infared spectroscopy, FTIR) 及熱重分析儀( thermogravimetric analysis , TGA) 的分析結果,發現於60瓦、80瓦及100瓦的功率下,最適化的電子束掃描次數分別為 15 次、10 次,及 5 次。於80瓦的功率下,10次掃描可以得到約 26% 的羧甲基纖維素/聚 (N-異丙基丙烯醯胺) 共聚物。此外,本研究所合成的羧甲基纖維素/聚 (N-異丙基丙烯醯胺)共聚物具有溫度敏感性,其最低臨界溶解溫度 (lower critical solution temperature, LCST) 為 33 oC。另外,培養小鼠纖維母細胞 (L-929) 於合成的羧甲基纖維素/聚 (N-異丙基丙烯醯胺) 共聚物上,實驗結果發現此共聚物具有良好的生物相容性。
本論文以羧甲基纖維素為基材,製備出三種不同的型式的材料,分別應用於抗菌、重金屬的吸附及細胞培養。值得一提的是,本研究所使用的方法具有簡便,對環境友善的優點,且在製程中不需使用交聯劑或是起始劑等化學藥劑,因此降低可能產生的生物毒性,可用於於生物工程相關的研究。此外,實驗所製備的羧甲基纖維素薄膜及聚乙烯醇/羧甲基纖維素水膠可用於吸附重金屬,因此可用於廢水處理及備羧甲基纖維素奈米複合物。另一方面,本研究所提出利用大氣電漿電子束合成羧甲基纖維素/聚(N-異丙基丙烯醯胺)共聚物的技術,可應用於合成不同種類的共聚物於水溶液中,因此具有許多應用的可能性。


Carboxymeethyl cellulose (CMC) is the most abundant derivative of cellulose which was regarded as a biocompatible material. This thesis reported different potential applications of CMC based materials in the forms of films, hydrogels, and copolymers. This thesis is composed of three parts: the preparation of insoluble metal/CMC films (CMCH) composites for antibacterial applications, the preparation of poly(vinyl alcohol) PVA/CMC composite hydrogels for the removal of heavy metal ions, and the syntheses of CMC/poly(N-isopropylacrylamide) (pNIPAAm) copolymers by atmospheric pressure plasm jet (APPJ).
In the first part, the insoluble CMCH films were prepared by acidification of CMC films. The CMCH films were found to possess ability for metal adsorption and metal reduction that allowed to prepare metal/CMC composites. In this thesis, the CMCH films were applied to incorporate Ag for preparing Ag/CMCH composite films which were further applied to evaluate the antibacterial abilities against the growth of E.coli. The results indicated that the CMC/Ag composites showed excellent antibacterial efficacy when the amount of silver exceeded the threshold of 1.76 µg/mm2.
In the second part, PVA/CMC hydrogels were prepared by freeze-thawed process for metal ions adsorption. At least 71% of insoluble PVA/CMC gels were obtained by the proposed method. The effects of the ratios between PVA and CMC on the adsorption capacity were investigated. Quantified results from inductively coupled plasma (ICP) revealed that the P2C1 hydrogels (containing two thirds of PVA and one third of CMC) presented the highest adsorption capacity toward Ag+ (8.4 mg per gram of hydrogel). The as prepared P2C1 hydrogels were applied to adsorb different metal ions, including Ag+, Ni2+, Cu2+, and Zn2+. The experimental results revealed that the prepared hydrogels possessed not only the adsorption ability but also the function of reducing metallic ions which was identified by ESCA analyses.
In the third part of the thesis, the thermo-responsive CMC/pNIPAAm copolymers were synthesized in aqueous solution by atmospheric pressure plasma jet (APPJ). The mechanism of the polymerization reactions between CMC and NIPAAm monomers by APPJ were proposed. In addition, the effects of applied power and scan number of plasma treatments were discussed. From Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) results, the optimized scan number for plasma treatments at 60 W, 80 W, and 100 W were scan 5, 10, and 15 times, correspondingly. For the samples treated at 80 W with 10 times of scan number, around 26.4% of CMC/pNIPAAm was obtained. Moreover, the synthesized CMC/pNIPAAm copolymers exhibited thermo-responsive properties with a lower critical solution temperature (LCST) of around 33 oC. Finally, the as-synthesized CMC/pNIPAAm copolymers were directly cultivated with L-929 fibroblasts which showed good biocompatibility.
Overall, this thesis demonstrated three types of applications for CMC based materials. Importantly, the preparation procedures tend to avoid the usages of solvents, reducing agents, or other chemical solvents such as crosslinkers or initiators which aimed to provide relative facile and environmental-friendly methods. The as-prepared CMCH films and PVA/CMC hydrogels were used to adsorb metal ions which showed the potential usages in waste water treatment and preparation of metal/CMC nanocomposites. On the other hand, the APPJ was proposed to synthesize CMC/pNIPAAm copolymers using dry process and demonstrated a novel possibility for the application of APPJ.

Abstract I 中文摘要 IV 致謝 VI Content VIII List of Figures XI List of Tables XIV Chapter 1 Introduction 1 Chapter 2 Literature review 4 2.1 Carboxymethyl cellulose (CMC) 4 2.2 Poly(vinyl alcohol) (PVA) 4 2.3 Hydrogels 5 2.4 Freeze-thaw techniques 5 2.5 Nanocomposites 6 2.5.1 CMC nanocomposites 7 2.6 Environmental-sensitive polymers 10 2.6.1 Temperature-sensitive polymers 10 2.7 Atmospheric pressure plasma jet (APPJ) 11 2.8 Poly(N-isopropylacrylsmide) (pNIPAAm) 11 2.8.1 Syntheses of pNIPAAm 12 Chapter 3 Experimental Section 15 3.1 Chemicals 15 3.1.1 Preparation of CMCH films, PVA/CMC hydrogels and CMC/pNIPAAm copolymers 15 3.1.2 Heavy metal ions adsorption by CMCH films and PVA/CMC hydrogels 16 3.1.3 Antibacterial experiments 17 3.1.4 Cell culture 17 3.1.5 LDH assay 18 3.1.6 MTT assay 19 3.2 Equipments and analytical instruments 20 3.3 Experimental procedures 21 3.3.1 Preparation of CMC and CMCH films 21 3.3.2 Preparation of Ag/CMCH composite films 21 3.3.3 Preparation of PVA/CMC hydrogels 22 3.3.4 Syntheses of CMC/pNIPAAm copolymers 22 3.3.5 Adsorption of metal ions by CMC films and PVA/CMC hydrogels 24 3.3.6 Gel fraction and swelling behavior of PVA/CMC hydrogels 25 3.3.7 Antibacterial tests 25 3.3.8 Cell culture 26 3.3.8.1 Preparation of cell culture medium 26 3.3.8.2 Preparation of phosphate buffered solution (PBS) 27 3.3.8.3 Preparation of LDH assays 27 3.3.8.4 Preparation of MTT solution 28 3.3.8.5 Harvesting of L-929 fibroblast cell 28 3.3.8.6 Cell viability (LDH assays) 28 3.3.8.7 Cell viability (MTT assays) 29 3.4 Material characterizations. 30 3.4.1 Surface morphology 30 3.4.2 Chemical functionality 30 3.4.3 Chemical composition 30 3.4.4 Quantity of metal ions 31 3.4.5 Crystallinity 31 3.4.6 Thermal behaviors 31 3.4.7 Average diameter of particles 32 3.5 Statistic analyses. 32 Chapter 4 Results and Discussion 33 4.1 Preparation of insoluble CMCH/metal composites for antibacterial applications 33 4.1.1 Preparation and characteristic of carboxymethyl cellulose 33 4.1.1.1 Preparation and acidification of carboxymethyl cellulose films 33 4.1.1.2 Surface characteristics of CMC and CMCH films 35 4.1.2 Preparation of Ag/CMCH composite films 39 4.2 Preparation of PVA/CMC composite hydrogels for the removal of heavy metal ions 44 4.2.1 Preparation of PVA/CMC hydrogels 44 4.2.2 Gel fraction and swelling behavior 49 4.3.3 Adsorption of metal ions 51 4.3 Syntheses of CMC/pNIPAAm copolymers by atmospheric pressure plasm jet 58 4.3.1 Characterization of CMC/pNIPAAm copolymers 58 4.3.1.1 Effects of APPJ treatment 58 4.3.2.2 Effects of scan number and applied power 65 4.3.2.3 Effects of post-polymerization and crosslinker 68 4.3.2 Biocompatibility of CMC/pNIPAAm copolymers 71 4.3.3 Mechanism for the syntheses of CMC/pNIPAAm copolymers 76 Chapter 5 Conclusion 78 5.1 Preparation of insoluble CMCH/metal composite for antibacterial applications 78 5.2 Preparation of PVA/CMC composite hydrogels for the removal of heavy metal ions 79 5.3 Syntheses of CMC/pNIPAAm copolymers by atmospheric pressure plasm jet 80 5.4 Conclusion and Outlook 81 Reference 83

1. Rachtanapun, P.; Luangkamind, S.; Tanpraserte, K.; Suriyatem, R., Carboxymethyl cellulose film from durian rind. LWT - Food Science and Technology 2012, 48, (1), 52-58.
2. Rachtanapun, P., Blended Films of Carboxymethyl Cellulose from Papaya Peel (CMCp) and Corn Starch. Kasetsart joural: natural science 2009, 43, (5), 259-266.
3. Rachtanapun, P.; Rattanapanone, N., Synthesis and Characterization of Carboxymethyl Cellulose Powder and Films from Mimosa pigra. Journal of Applied Polymer Science 2011, 122, (5), 3218-3226.
4. Wang, M.; Xu, L.; Hu, H.; Zhai, M.; Peng, J.; Nho, Y.; Li, J.; Wei, G., Radiation synthesis of PVP/CMC hydrogels as wound dressing. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2007, 265, (1), 385-389.
5. Ninan, N.; Muthiah, M.; Park, I. K.; Elain, A.; Thomas, S.; Grohens, Y., Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohydr Polym 2013, 98, (1), 877-85.
6. DeMerlis, C. C.; Schoneker, D. R., Review of the oral toxicity of polyvinyl alcohol (PVA). Food and Chemical Toxicology 2003, 41, 319-326.
7. Luo, Y.-L.; Wei, Q.-B.; Xu, F.; Chen, Y.-S.; Fan, L.-H.; Zhang, C.-H., Assembly, characterization and swelling kinetics of Ag nanoparticles in PDMAA-g-PVA hydrogel networks. Materials Chemistry and Physics 2009, 118, (2-3), 329-336.
8. Nguyen, N.-T.; Liu, J.-H., A green method for in situ synthesis of poly(vinyl alcohol)/chitosan hydrogel thin films with entrapped silver nanoparticles. Journal of the Taiwan Institute of Chemical Engineers 2014, 45, (5), 2827-2833.
9. Jamnongkan, T.; Kantarot, K.; Niemtang, K.; Pansila, P. P.; Wattanakornsiri, A., Kinetics and mechanism of adsorptive removal of copper from aqueous solution with poly(vinyl alcohol) hydrogel. Transactions of Nonferrous Metals Society of China 2014, 24, (10), 3386-3393.
10. Chang, C.; Zhang, L.; Zhoua, J.; Zhang, L.; Kennedy, J. F., Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydrate Polymers 2010, 82, 122-127.
11. Hoffman, A. S., Hydrogels for biomedical applications. Advanced Drug Delivery Reviews 2012, 64, 18-23.
12. Pourjavadi, A.; Barzegar, S.; Mahdavinia, G. R., MBA-crosslinked Na-Alg/CMC as a smart full-polysaccharide superabsorbent hydrogels. Carbohydrate Polymers 2006, 66, (3), 386-395.
13. Abou Taleb, M. F.; Abd El-Mohdy, H. L.; Abd El-Rehim, H. A., Radiation preparation of PVA/CMC copolymers and their application in removal of dyes. J Hazard Mater 2009, 168, (1), 68-75.
14. Nugent, M. J. D.; Higginbotham, C. L., Preparation of a novel freeze thawed poly(vinyl alcohol) composite hydrogel for drug delivery applications. European Journal of Pharmaceutics and Biopharmaceutics 2007, 67, (2), 377-386.
15. Barakat, M. A., New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry 2011, 4, (4), 361-377.
16. Hassan, C.; Peppas, N., Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods. In Biopolymers: PVA Hydrogels, Anionic Polymerisation Nanocomposites, Springer Berlin Heidelberg: 2000; Vol. 153, pp 37-65.
17. Holloway, J. L.; Lowman, A. M.; Palmese, G. R., The role of crystallization and phase separation in the formation of physically cross-linked PVA hydrogels. Soft Matter 2013, 9, (3), 826-833.
18. Qi, X.; Hu, X.; Wei, W.; Yu, H.; Li, J.; Zhang, J.; Dong, W., Investigation of Salecan/poly(vinyl alcohol) hydrogels prepared by freeze/thaw method. Carbohydrate Polymers 2015, 118, 60-69.
19. Millon, L. E.; Guhados, G.; Wan, W., Anisotropic polyvinyl alcohol-Bacterial cellulose nanocomposite for biomedical applications. J Biomed Mater Res B Appl Biomater 2008, 86, (2), 444-52.
20. Kenawy, E.-R.; Kamoun, E. A.; Mohy Eldin, M. S.; El-Meligy, M. A., Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: Synthesis and characterization for biomedical applications. Arabian Journal of Chemistry 2014, 7, (3), 372-380.
21. Guan, Y.; Bian, J.; Peng, F.; Zhang, X.-M.; Sun, R.-C., High strength of hemicelluloses based hydrogels by freeze/thaw technique. Carbohydrate Polymers 2014, 101, 272-280.
22. Lee, M. H.; Baek, M. H.; Cha, D. S.; Park, H. J.; Lim, S. T., Freeze–thaw stabilization of sweet potato starch gel by polysaccharide gums. Food Hydrocolloids 2002, 16, 345-352.
23. Zhou, L.; Thanh, T. L.; Gong, J.; Kim, J.-H.; Kim, E.-J.; Chang, Y.-S., Carboxymethyl cellulose coating decreases toxicity and oxidizing capacity of nanoscale zerovalent iron. Chemosphere 2014, 104, 155-161.
24. Sunkara, B.; Zhan, J.; He, J.; McPherson, G. L.; Piringer, G.; John, V. T., Nanoscale Zerovalent Iron Supported on Uniform Carbon Microspheres for the In situ Remediation of Chlorinated Hydrocarbons. ACS Appl. Mater. Interfaces 2010, 2, (10), 2854-2862.
25. Luna-Martínez, J. F.; Hernández-Uresti, D. B.; Reyes-Meloa, M. E.; Guerrero-Salazar, C. A.; González-González, V. A.; Sepúlveda-Guzmán, S., Synthesis and optical characterization of ZnS-sodium carboxymethyl cellulose nanocomposite films. Carbohydrate Polymers 2011, 84, (1), 566-570.
26. Fang, B.; Bonakdarpour, A.; Reilly, K.; Xing, Y.; Taghipour, F.; Wilkinson, D. P., Large-Scale Synthesis of TiO2 Microspheres with Hierarchical Nanostructure for Highly Efficient Photodriven Reduction of CO2 to CH4. ACS Appl. Mater. Interfaces 2014, 6 (17), 15488-15498.
27. Vimala, K.; Sivudu, K. S.; Mohan, Y. M.; Sreedhar, B.; Raju, K. M., Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly(acrylamide) and carbohydrates: A rational methodology for antibacterial application. Carbohydrate Polymers 2009, 75, (3), 463-471.
28. Rai, M.; Yadav, A.; Gade, A., Silver nanoparticles as a new generation of antimicrobials. Biotechnology Advances 2009, 27, (1), 76-83.
29. Maneerung, T.; Tokura, S.; Rujiravanit, R., Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydrate Polymers 2008, 72, (1,3), 43-51.
30. Hebeish, A.; Hashem, M.; El-Hady, M. M. A.; Sharaf, S., Development of CMC hydrogels loaded with silver nano-particles for medical applications. Carbohydrate Polymers 2013, 92, (1), 407-413.
31. Zhong, T.; Oporto, G. S.; Jaczynski, J.; Tesfai, A. T.; Armstrong, J., Antimicrobial properties of the hybrid copper nanoparticles-carboxymerhyl cellulose. Wood and Fiber Science 2013, 45, (2), 215-222.
32. Yang, S.; Fu, S.; Liu, H.; Zhou, Y.; Li, X., Hydrogel beads based on carboxymethyl cellulose for removal heavy metal ions. Journal of Applied Polymer Science 2011, 119, (2), 1204-1210.
33. Nadagouda, M. N.; Varma, R. S., Synthesis of thermally stable carboxymethyl cellulose/metal biodegradable nanocomposites for potential biological applications. Biomacromolecules 2007, 8, (9), 2762-2767.
34. He, F.; Liu, J.; Roberts, C. B.; Zhao, D., One-Step “Green” Synthesis of Pd Nanoparticles of Controlled Size and Their Catalytic Activity for Trichloroethene Hydrodechlorination. Industrial & Engineering Chemistry Research 2009, 48, (14), 6550-6557.
35. He, F.; Zhao, D.; Liu, J.; Roberts, C. B., Stabilization of Fe-Pd Nanoparticles with Sodium Carboxymethyl Cellulose for Enhanced Transport and Dechlorination of Trichloroethylene in Soil and Groundwater. Industrial & Engineering Chemistry Research 2007, 46, (1), 29-34.
36. Zhang, Y.; Liu, Y.; Wang, X.; Sun, Z.; Ma, J.; Wu, T.; Xing, F.; Gao, J., Porous graphene oxide/carboxymethyl cellulose monoliths, with high metal ion adsorption. Carbohydrate Polymers 2014, 101, 392-400.
37. Song, J.; Birbach, N. L.; Hinestroza, J. P., Deposition of Silver Nanoparticles on Cellulosic Fibers via Stabilization of Carboxymethyl Groups. Cellulose 2012, 19, (2), 411-424.
38. Hashem, M.; Sharaf, S.; El-Hady, M. M. A.; Hebeish, A., Synthesis and characterization of novel carboxymethylcellulose hydrogels and carboxymethylcellulolse-hydrogel-ZnO-nanocomposites. Carbohydrate Polymers 2013, 95,, (1), 421-427.
39. Garza-Navarro, M. A.; Aguirre-Rosales, J. A.; Llanas-Vázquez, E. E.; Moreno-Cortez, I. E.; Torres-Castro, A.; González-González, V., Totally Ecofriendly Synthesis of Silver Nanoparticles from Aqueous Dissolutions of Polysaccharides. International Journal of Polymer Science 2013, 2013, 8.
40. Hebeish, A. A.; El-Rafie, M. H.; Abdel-Mohdy, F. A.; Abdel-Halim, E. S., Carboxymethyl cellulose for green synthesis and stabilization of silver nanoparticles. Carbohydrate Polymers 2010, 82, (3), 933-941.
41. Nadezhda Rangelova; Lyubomir Aleksandrov; Angelova, T.; Georgieva, N.; Müller, R., Preparation and characterization of SiO2/CMC/Ag hybrids withantibacterial properties. Carbohydrate Polymers 2014, 101, 1166– 1175.
42. Miyama, T.; Yonezawa, Y., Photoinduced formation and aggregation of silver nanoparticles at the surface of carboxymethylcellulose films. Journal of Nanoparticle Research 2004, 6, (5), 457-465.
43. Priya James, H.; John, R.; Alex, A.; Anoop, K. R., Smart polymers for the controlled delivery of drugs – a concise overview. Acta Pharmaceutica Sinica B 2014, 4, (2), 120-127.
44. Chen, J. K.; Chang, C. J., Fabrications and Applications of Stimulus-Responsive Polymer Films and Patterns on Surfaces: A Review. Materials 2014, 7, (2), 805.
45. Carreira, A. S.; Gonçalves, F. A. M. M.; Mendonça, P. V.; Gil, M. H.; Coelho, J. F. J., Temperature and pH responsive polymers based on chitosan: Applications and new graft copolymerization strategies based on living radical polymerization. Carbohydrate Polymers 2010, 80, (3), 618-630.
46. Qiu, Y.; Park, K., Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews 2012, 64, 49-60.
47. Han, J.; Wang, K.; Yang, D.; Nie, J., Photopolymerization of methacrylated chitosan/PNIPAAm hybrid dual-sensitive hydrogels as carrier for drug delivery. International Journal of Biological Macromolecules 2009, 44, (3), 229-235.
48. Hoogenboom, R., 2 - Temperature-responsive polymers: properties, synthesis and applications. In Smart Polymers and their Applications, Aguilar, M. R.; Román, J. S., Eds. Woodhead Publishing: 2014; pp 15-44.
49. Hiruta, Y.; Nagumo, Y.; Suzuki, Y.; Funatsu, T.; Ishikawa, Y.; Kanazawa, H., The effects of anionic electrolytes and human serum albumin on the LCST of poly(N-isopropylacrylamide)-based temperature-responsive copolymers. Colloids and Surfaces B: Biointerfaces 2015, 132, 299-304.
50. Costa, M. C. M.; Silva, S. M. C.; Antunes, F. E., Adjusting the low critical solution temperature of poly(N-isopropyl acrylamide) solutions by salts, ionic surfactants and solvents: A rheological study. Journal of Molecular Liquids 2015, 210, Part A, 113-118.
51. Tendero, C.; Tixier, C.; Tristant, P.; Desmaison, J.; Leprince, P., Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B: Atomic Spectroscopy 2006, 61, (1), 2-30.
52. Schutze, A.; Jeong, J. Y.; Babayan, S. E.; Park, J.; Selwyn, G. S.; Hicks, R. F., The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. Plasma Science, IEEE Transactions on 1998, 26, (6), 1685-1694.
53. Laroussi, M.; Akan, T., Arc‐Free Atmospheric Pressure Cold Plasma Jets: A Review. Plasma Processes and Polymers 2007, 4, (9), 777-788.
54. Lue, S. J.; Hsu, J. J.; Wei, T. C., Drug permeation modeling through the thermo-sensitive membranes of poly(N-isopropylacrylamide) brushes grafted onto micro-porous films. Journal of Membrane Science 2008, 321, (2), 146-154.
55. Patel, N. G.; Cavicchia, J. P.; Zhang, G.; Zhang Newby, B.-m., Rapid cell sheet detachment using spin-coated pNIPAAm films retained on surfaces by an aminopropyltriethoxysilane network. Acta Biomaterialia 2012, 8, (7), 2559-2567.
56. Manikas, A. C.; Romeo, G.; Papa, A.; Netti, P. A., Highly Efficient Surface-Enhanced Raman Scattering Substrate Formulation by Self-Assembled Gold Nanoparticles Physisorbed on Poly(N-isopropylacrylamide) Thermoresponsive Hydrogels. Langmuir 2014, 30, (13), 3869-3875.
57. Cui, Z.; Lee, B. H.; Pauken, C.; Vernon, B. L., Degradation, cytotoxicity, and biocompatibility of NIPAAm-based thermosensitive, injectable, and bioresorbable polymer hydrogels. Journal of Biomedical Materials Research Part A 2011, 98A, (2), 159-166.
58. Wang, X.-L.; Huang, J.; Chen, X.-Z.; Yu, X.-H., Graft polymerization of N-isopropylacrylamide into a microporous polyethylene membrane by the plasma method: technique and morphology. Desalination 2002, 146, (1–3), 337-343.
59. Shimizu, H.; Wada, R.; Okabe, M., Preparation and Characterization of Micrometer-Sized Poly(N-isopropylacrylamide) Hydrogel Particles. Polym. J 2009, 41, (9), 771-777.
60. Zhu, X.; Gu, X.; Zhang, L.; Kong, X.-Z., Preparation and characterization of nanosized P(NIPAM-MBA) hydrogel particles and adsorption of bovine serum albumin on their surface. Nanoscale Research Letters 2012, 7, (1), 519.
61. Xiao, X. C., Effect of the initiator on thermosensitive rate of poly(N-isopropylacrylamide) hydrogels. eXPRESS Polymer Letters 2007, 1, (4), 232-235.
62. Curti, P. S.; Moura, M. R. d.; Veiga, W.; Radovanovic, E.; Rubira, A. F.; Muniz, E. C., Characterization of PNIPAAm photografted on PET and PS surfaces. Applied Surface Science 2005, 245, (1–4), 223-233.
63. Zhang, X.; Wu, D.; Chu, C.-C., Synthesis and characterization of partially biodegradable, temperature and pH sensitive Dex–MA/PNIPAAm hydrogels. Biomaterials 2004, 25, (19), 4719-4730.
64. Singh, D.; Kuckling, D.; Choudhary, V.; Adler, H.-J.; Koul, V., Synthesis and characterization of poly(N-isopropylacrylamide) films by photopolymerization. Polymers for Advanced Technologies 2006, 17, (3), 186-192.
65. Chen, K.-S.; Tsai, J.-C.; Chou, C.-W.; Yang, M.-R.; Yang, J.-M., Effects of additives on the photo-induced grafting polymerization of N-isopropylacrylamide gel onto PET film and PP nonwoven fabric surface. Materials Science and Engineering: C 2002, 20, (1–2), 203-208.
66. Zhao, Z.; Li, Z.; Xia, Q.; Xi, H.; Lin, Y., Fast synthesis of temperature-sensitive PNIPAAm hydrogels by microwave irradiation. European Polymer Journal 2008, 44, (4), 1217-1224.
67. Maolin, Z.; Ning, L.; Jun, L.; Min, Y.; Jiuqiang, L.; Hongfei, H., Radiation preparation of PVA-g-NIPAAm in a homogeneous system and its application in controlled release. Radiation Physics and Chemistry 2000, 57, (3–6), 481-484.
68. Pan, Y. V.; Wesley, R. A.; Luginbuhl, R.; Denton, D. D.; Ratner, B. D., Plasma Polymerized N-Isopropylacrylamide:  Synthesis and Characterization of a Smart Thermally Responsive Coating. Biomacromolecules 2001, 2, (1), 32-36.
69. Liang, L.; Shi, M.; Viswanathan, V. V.; Peurrung, L. M.; Young, J. S., Temperature-sensitive polypropylene membranes prepared by plasma polymerization. Journal of Membrane Science 2000, 177, (1–2), 97-108.
70. Chen, K. S.; Liao, S. C.; Lin, S. W.; Tsao, S. H.; Ting, T. H.; Inagaki, N.; Wu, H. M.; Chen, W. Y., The film deposition via atmospheric pressure plasma from ethanol and He mixing gases. Surface and Coatings Technology 2013, 231, (0), 408-411.
71. Molina, R.; Ligero, C.; Jovančić, P.; Bertran, E., In Situ Polymerization of Aqueous Solutions of NIPAAm Initiated by Atmospheric Plasma Treatment. Plasma Processes and Polymers 2013, 10, (6), 506-516.
72. Zhang, W.; Zhu, S.; Bai, Y.; Xi, N.; Wang, S.; Bian, Y.; Li, X.; Zhang, Y., Glow discharge electrolysis plasma initiated preparation of temperature/pH dual sensitivity reed hemicellulose-based hydrogels. Carbohydrate Polymers 2015, 122, (0), 11-17.
73. Kaja, S.; Payne, A. J.; Singh, T.; Ghuman, J. K.; Sieck, E. G.; Koulen, P., An optimized lactate dehydrogenase release assay for screening of drug candidates in neuroscience. Journal of Pharmacological and Toxicological Methods 2015, 73, 1-6.
74. Viera, R. G. P.; Filho, G. R.; Assun, R. M. N. d.; Meireles, C. d. S.; Vieira, J. G.; Oliveira, G. S. d., Synthesis and characterization of methylcellulose from sugar cane bagasse cellulose. Carbohydrate Polymers 2007, 67, (2), 182-189.
75. Cuba-Chiem, L. T.; Huynh, L.; Ralston, J.; Beattie, D. A., In Situ Particle Film ATR FTIR Spectroscopy of Carboxymethyl Cellulose Adsorption on Talc: Binding Mechanism, pH Effects, and Adsorption Kinetics. Langmuir 2008, 24, (15), 8036-8044.
76. Shehap, A. M., Thermal and Spectroscopic Studies of Polyvinyl Alcohol/Sodium Carboxy Methyl Cellulose Blends. Egypt. J. Solids 2008, 31, (1), 75-91.
77. Wang, J.; Somasundaran, P., Adsorption and conformation of carboxymethyl cellulose at solid-liquid interfaces using spectroscopic, AFM and allied techniques. Journal of Colloid and Interface Science 2005, 291, (1), 75-83.
78. Cao, J.; Li, X.; Tavakoli, J.; Zhang, W. X., Temperature programmed reduction for measurement of oxygen content in nanoscale zero-valent iron. Environ Sci Technol. 2008, 42, (10), 3780-3785.
79. Syed K. H. Gulrez; Al-Assaf, S.; Phillips, G. O., Hydrogels: Methods of Preparation, Characterisation and Applications. In Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications, Carpi, A., Ed. 2011; pp 128-129.
80. Seki, Y.; Altinisik, A.; Demircioğlu, B.; Tetik, C., Carboxymethylcellulose (CMC)-hydroxyethylcellulose (HEC) based hydrogels: synthesis and characterization. Cellulose 2014, 21, (3), 1689-1698.
81. Zemlyanov, D.; Weinberg, G.; Wild, U.; Schlogl, R., Formation of a liquid film of AgNO3 on a silver surface. Catalysis Letters 2000, 64, (2-4), 118 113.
82. Bhaduri, G. A.; Little, R.; Khomane, R. B.; Lokhande, S. U.; Kulkarni, B. D.; Mendis, B. G.; Siller, L., Green synthesis of silver nanoparticles using sunlight. Journal of Photochemistry and Photobiology A: Chemistry 2013, 258, 1-9.
83. Zhang, H.; Zhang, F.; Wu, J., Physically crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique. Reactive & Functional Polymers 2013, 73, 923-928.
84. Păduraru, O. M.; Ciolacu, D.; Darie, R. N.; Vasile, C., Synthesis and characterization of polyvinyl alcohol/cellulose cryogels and their testing as carriers for a bioactive component. Materials Science and Engineering: C 2012, 32, (8), 2508-2515.
85. Ricciardi, R.; Auriemma, F.; Rosa, C. D.; Laupre, F. o., X-ray Diffraction Analysis of Poly(vinyl alcohol) Hydrogels, Obtained by Freezing and Thawing Techniques. Macromolecules 2004, 37, 1921-1927.
86. Shehap, A. M., Thermal and Spectroscopic Studies of Polyvinyl Alcohol Sodium Carboxy Methyl Cellulose Blends. Egypt. J. Solids 2008, 31, (1), 75-90.
87. Abitbol, T.; Johnstone, T.; Quinn, T. M.; Gray, D. G., Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing. Soft Matter 2011, 7, (6), 2373.
88. Zhou, Y.; Fu, S.; Zhang, L.; Zhan, H., Superabsorbent nanocomposite hydrogels made of carboxylated cellulose nanofibrils and CMC-g-p(AA-co-AM). Carbohydrate Polymers 2013, 97, (2), 429-435.
89. Qi, X.; Hu, X.; Wei, W.; Yu, H.; Li, J.; Zhang, J.; Dong, W., Investigation of Salecan/poly(vinyl alcohol) hydrogels prepared by freeze/thaw method. Carbohydr Polym 2015, 118, 60-9.
90. Xiao, C.; Gao, Y., Preparation and properties of physically crosslinked sodium carboxymethylcellulose/poly(vinyl alcohol) complex hydrogels. Journal of Applied Polymer Science 2008, 107, (3), 1568-1572.
91. Salmawi, K. M. E., Application of Polyvinyl Alcohol (PVA)/Carboxymethyl Cellulose (CMC) Hydrogel Produced by Conventional Crosslinking or by Freezing and Thawing. Journal of Macromolecular Science, Part A 2007, 44, (6), 619-624.
92. Lim, S. J.; Lee, J. H.; Piao, M. G.; Lee, M. K.; Oh, D. H.; Hwang du, H.; Quan, Q. Z.; Yong, C. S.; Choi, H. G., Effect of sodium carboxymethylcellulose and fucidic acid on the gel characterization of polyvinylalcohol-based wound dressing. Arch Pharm Res 2010, 33, (7), 1073-81.
93. Chang, C.; Lue, A.; Zhang, L., Effects of Crosslinking Methods on Structure and Properties of Cellulose/PVA Hydrogels. Macromol. Chem. Phys. 2008, 209, 1266–1273 2008, 209, 1266-1273.
94. A.Hiroki; H.T.Tran; N.Nagasawa; T.Yagi; M.Tamada, Metal adsorption of carboxymethyl cellulose/carboxymethyl chitosan blend hydrogels prepared by Gamma irradiation. Radiation PhysicsandChemistry 2009, 78, 1076-1080.
95. Hara, K.; Iida, M.; Yano, K.; Nishida, T., Metal ion absorption of carboxymethylcellulose gel formed by gamma-ray irradiation. For the environmental purification. Colloids Surf B Biointerfaces 2004, 38, (3-4), 227-30.
96. Yang, S.; Fu, S.; Liu, H.; Zhou, Y.; Li, X., Hydrogel Beads Based on Carboxymethyl Cellulose for Removal Heavy Metal Ions. Journal of Applied Polymer Science 2010, 110, 1204-1210.
97. Özkahraman, B.; Acar, I.; Emik, S., Removal of Cu2+ and Pb2+ Ions Using CMC Based Thermoresponsive Nanocomposite Hydrogel. CLEAN - Soil, Air, Water 2011, 39, (7), 658-664.
98. Liu, Y.; Wang, W.; Wang, A., Adsorption of lead ions from aqueous solution by using carboxymethyl cellulose-g-poly (acrylic acid)/attapulgite hydrogel composites. Desalination 2010, 259, (1-3), 258-264.
99. Wan Ngah, W. S.; Kamari, A.; Koay, Y. J., Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads. International Journal of Biological Macromolecules 2004, 34, (3), 155-161.
100. Jin, L.; Bai, R., Mechanisms of Lead Adsorption on Chitosan PVA Hydrogel Beads. Langmuir 2002, 18, 9765-9770.
101. Francis, S.; Varshney, L., Studies on radiation synthesis of PVA/EDTA hydrogels. Radiation Physics and Chemistry 2005, 74, (5), 310-316.
102. Wu, N.; Li, Z., Synthesis and characterization of poly(HEA/MALA) hydrogel and its application in removal of heavy metal ions from water. Chemical Engineering Journal 2013, 215-216, 894-902.
103. Barakat, M. A., Removal of Cu (II), Ni (II) and Cr (III) Ions from Wastewater Using Complexation-Ultrafiltration Technique. Journal of Environmental Science and Techhnology 2008, 1, (3), 151-156.
104. Vani, J. S.; Rao, K. M.; Reddy, N. S. G.; Rao, K. S. V. K., Synthesis and Characterization of Sodium Carboxy Methyl Cellulose Poly (Acrylamide) Magnetic Nano Composite Semi IPN's for Removal of Heavy Metal Ions. World Journal of Nano Science & Technology 2013, 2, (1), 33-41.
105. Cao, J.; Li, X.; Tavakoli, J.; Zhang, W. X., Temperature Programmed Reduction for Measurement of Oxygen Content in Nanoscale Zero-Valent Iron. Environ. Sci. Technol 2008, 42, 3780-3785.
106. Boufia, S.; Vilar, M. R.; Ferraria, A. M.; Rego, A. M. B. d., In situ photochemical generation of silver and gold nanoparticles on chitosan. Colloids and Surfaces A: Physicochem. Eng. Aspects 2013, 439, 151-158.
107. Ibrahim, M. M.; Koschella, A.; Kadry, G.; Heinze, T., Evaluation of cellulose and carboxymethyl cellulose/poly(vinyl alcohol) membranes. Carbohydrate Polymers 2013, 95, (1), 414-420.
108. Wang, X.; McCord, M. G., Grafting of poly(N-isopropylacrylamide) onto nylon and polystyrene surfaces by atmospheric plasma treatment followed with free radical graft copolymerization. Journal of Applied Polymer Science 2007, 104, (6), 3614-3621.
109. Bearat, H. H.; Lee, B. H.; Vernon, B. L., Comparison of properties between NIPAAm-based simultaneously physically and chemically gelling polymer systems for use in vivo. Acta Biomaterialia 2012, 8, (10), 3629-3642.
110. Geever, L. M.; Devine, D. M.; Nugent, M. J. D.; Kennedy, J. E.; Lyons, J. G.; Hanley, A.; Higginbotham, C. L., Lower critical solution temperature control and swelling behaviour of physically crosslinked thermosensitive copolymers based on N-isopropylacrylamide. European Polymer Journal 2006, 42, (10), 2540-2548.
111. Yu, J.; Yang, G.; Li, Y.; Yang, W.; Gao, J.; Lu, Q., Synthesis, Characterization, and swelling behaviors of acrylic acid/carboxymethyl cellulose superabsorbent hydrogel by glow-discharge electrolysis plasma. Polymer Engineering & Science 2014, 54, (10), 2310-2320.
112. Semsarilar, M.; Tom, J.; Ladmiral, V.; Perrier, S., Supramolecular hybrids of cellulose and synthetic polymers. Polymer Chemistry 2012, 3, (12), 3266-3275.
113. Ekici, S., Intelligent poly(N-isopropylacrylamide)-carboxymethyl cellulose full interpenetrating polymeric networks for protein adsorption studies. Journal of Materials Science 2010, 46, (9), 2843-2850.
114. Vasile, C.; Bumbu, G. G.; Petronela Dumitriu, R.; Staikos, G., Comparative study of the behavior of carboxymethyl cellulose-g-poly(N-isopropylacrylamide) copolymers and their equivalent physical blends. European Polymer Journal 2004, 40, (6), 1209-1215.
115. Sosnik, A.; Imperiale, J. C.; Vázquez-González, B.; Raskin, M. M.; Muñoz-Muñoz, F.; Burillo, G.; Cedillo, G.; Bucio, E., Mucoadhesive thermo-responsive chitosan-g-poly(N-isopropylacrylamide) polymeric micelles via a one-pot gamma-radiation-assisted pathway. Colloids and Surfaces B: Biointerfaces 2015, 136, 900-907.
116. Bokias, G.; Mylonas, Y.; Staikos, G.; Bumbu, G. G.; Vasile, C., Synthesis and Aqueous Solution Properties of Novel Thermoresponsive Graft Copolymers Based on a Carboxymethylcellulose Backbone. Macromolecules 2001, 34, (14), 4958-4964.
117. Norberg, S. A.; Tian, W.; Johnsen, E.; Kushner, M. J., Atmospheric pressure plasma jets interacting with liquid covered tissue: touching and not-touching the liquid. Journal of Physics D: Applied Physics 2014, 47, (47), 475203.
118. Lukes, P.; Dolezalova, E.; Sisrova, I.; Clupek, M., Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Science and Technology 2014, 23, (1), 015019.
119. Bural, C.; Aktaş, E.; Deniz, G.; Ünlüçerçi, Y.; Kızılcan, N.; Bayraktar, G., Effect of post-polymerization heat-treatments on degree of conversion, leaching residual MMA and in vitro cytotoxicity of autopolymerizing acrylic repair resin. Dental Materials 2011, 27, (11), 1135-1143.
120. Zhang, J. T.; Pan, C. J.; Keller, T.; Bhat, R.; Gottschaldt, M.; Schubert, U. S.; Jandt, K. D., Monodisperse, Temperature‐Sensitive Microgels Crosslinked by Si-O-Si Bonds. Macromolecular Materials and Engineering 2009, 294, (6‐7), 396-404.
121. Yang, M.; Zhao, K., Anomalous Volume Phase Transition Temperature of Thermosensitive Semi-Interpenetrating Polymer Network Microgel Suspension by Dielectric Spectroscopy. The Journal of Physical Chemistry B 2015, 119, (41), 13198-13207.
122. Fuciños, C.; Fuciños, P.; Míguez, M.; Katime, I.; Pastrana, L. M.; Rúa, M. L., Temperature- and pH-Sensitive Nanohydrogels of Poly(N-Isopropylacrylamide) for Food Packaging Applications: Modelling the Swelling-Collapse Behaviour. PLoS ONE 2014, 9, (2), e87190.
123. Lue, S. J.; Hsu, J.-J.; Chen, C.-H.; Chen, B.-C., Thermally on–off switching membranes of poly(N-isopropylacrylamide) immobilized in track-etched polycarbonate films. Journal of Membrane Science 2007, 301, (1–2), 142-150.
124. Guilherme, M. R.; da Silva, R.; Rubira, A. F.; Geuskens, G.; Muniz, E. C., Thermo-sensitive hydrogels membranes from PAAm networks and entangled PNIPAAm: effect of temperature, cross-linking and PNIPAAm contents on the water uptake and permeability. Reactive and Functional Polymers 2004, 61, (2), 233-243.
125. Guo, B.-L.; Gao, Q.-Y., Preparation and properties of a pH/temperature-responsive carboxymethyl chitosan/poly(N-isopropylacrylamide)semi-IPN hydrogel for oral delivery of drugs. Carbohydrate Research 2007, 342, (16), 2416-2422.
126. Rumbach, P.; Bartels, D. M.; Sankaran, R. M.; Go, D. B., The solvation of electrons by an atmospheric-pressure plasma. Nat Commun 2015, 6.
127. Peng, J.-W.; Lee, S., Atmospheric Pressure Plasma Degradation of Azo Dyes in Water: pH and Structural Effects. Plasma Chemistry and Plasma Processing 2013, 33, (6), 1063-1072.
128. Zhang, W.; Sha, Z.; Huang, Y.; Bai, Y.; Xi, N.; Zhang, Y., Glow discharge electrolysis plasma induced synthesis of cellulose-based ionic hydrogels and their multiple response behaviors. RSC Advances 2015, 5, (9), 6505-6511.

無法下載圖示 全文公開日期 2021/01/15 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE