簡易檢索 / 詳目顯示

研究生: 黃岳翰
Yueh-Han Huang
論文名稱: 軸向觀測液態電極電漿原子放射光譜儀應用於重金屬感測
Axial View Liquid Electrode Plasma Atomic Emission Spectroscopy for Heavy Metal Detection
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 魏大欽
Ta-Chin Wei
陳建彰
Jian-Zhang Chen
陳賜原
Szu-yuan Chen
江偉宏
Wei-Hung Chiang
高村禪
Yuzuru Takamura
王孟菊
Meng-Jiy Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 130
中文關鍵詞: 液態電極電漿園子放射光譜儀重金屬感測電漿診斷元素分析
外文關鍵詞: liquid electrode plasma, atomic emission spectroscopy, heavy metal detection, plasma diagnostics, elemental analysis
相關次數: 點閱:287下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Contents 摘要 I Abstract III 誌謝 V Contents VI List of Figures VIII List of Tables XV Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 Heavy metal detection methods 4 2.2 Electrolyte cathode atmospheric pressure glow discharge (ELCAD) 5 2.3 Solution cathode glow discharge (SCGD) 6 2.4 Solution anode glow discharge (SAGD) 7 2.5 Liquid-sampling-atmospheric pressure glow discharge (LS-APGD) 7 2.6 Liquid electrode plasma atomic emission spectroscopy (LEP-AES) 8 2.7 Plasma diagnostics 9 2.7.1 Determination of gas temperature (Tg) 10 2.7.2 Determination of excitation temperature (Tex) 12 2.7.3 Determination of electron density (ne) 13 Chapter 3 Experimental 30 3.1 Chemicals and reagents, and instruments 30 3.2 Fabrication of axial view LEP 31 3.2.1 Preparation of channel mold 31 3.2.2 Preparation and assembly of axial view LEP 32 3.3 Heavy metal detection 33 3.3.1 Experimental set-up 33 3.3.2 Optimization of detection conditions 34 3.3.3 Analytical performance 35 3.3.4 Reproducibility and durability test 36 3.4 Spectroscopic diagnostics of plasmas 37 3.4.1 Experimental set-up 37 3.4.2 Determination of excitation temperature 37 3.4.3 Determination of gas temperature 38 3.4.4 Determination of electron density 39 Chapter 4 Results and Discussion 43 4.1 Working mechanisms of axial view LEP-AES 43 4.2 Observation of plasma and bubble generation in axial view LEP 45 4.3 Effects of applied voltage on the detection of heavy metals 47 4.4 Effects of discharge time on the detection of heavy metals 47 4.5 Effects of pulsed-high voltage on the detection of heavy metals 48 4.6 Effects of flow direction and flow rate on the detection of heavy metals 50 4.7 Analytical performance of axial view LEP-AES 51 4.8 Reproducibility and durability test 54 Chapter 5 Plasma diagnostics 73 5.1 Calculation of Tex, Tg, and ne 73 5.2 Effect of applied voltage on Tex, Tg, and ne 74 5.3 Effects of continuous plasma discharge on Tex, Tg, and ne 75 5.4 Effects of pulse plasma discharge on Tex, Tg, and ne 76 5.5 Comparison of Tex, Tg, and ne 76 5.6 Correlation between Tex, Tg, and ne and metal emission 77 Chapter 6 Conclusions 88 Reference 90 Appendix: Q&A 98

    Reference
    1. Gumpu, M.B., S. Sethuraman, U.M. Krishnan, and J.B.B. Rayappan, A review on detectin of heavy metal ions in water–an electrochemical approach. Sensors and Actuators B: Chemical, 2015. 213: p. 515-533.
    2. Aragay, G., J. Pons, and A. Merkoçi, Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. Chemical Reviews, 2011. 111(5): p. 3433-3458.
    3. Rainbow, P.S., Trace metal bioaccumulation: models, metabolic availability and toxicity. Environment International, 2007. 33(4): p. 576-582.
    4. Richmonds, C. and R.M. Sankaran, Plasma-liquid electrochemistry: Rapid synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous cations. Applied Physics Letters, 2008. 93(13): p. 131501.
    5. Mariotti, D. and R.M. Sankaran, Microplasmas for nanomaterials synthesis. Journal of Physics D: Applied Physics, 2010. 43(32): p. 323001.
    6. Zhou, R., J. Li, R. Zhou, X. Zhang, and S. Yang, Atmospheric-pressure plasma treated water for seed germination and seedling growth of mung bean and its sterilization effect on mung bean sprouts. Innovative Food Science & Emerging Technologies, 2019. 53: p. 36-44.
    7. Zhang, X., R. Zhou, K. Bazaka, Y. Liu, R. Zhou, G. Chen, Z. Chen, Q. Liu, S. Yang, and K. Ostrikov, Quantification of plasma produced OH radical density for water sterilization. Plasma Processes and Polymers, 2018. 15(6): p. 1700241.
    8. Jablonowski, H. and T. von Woedtke, Research on plasma medicine-relevant plasma–liquid interaction: What happened in the past five years? Clinical Plasma Medicine, 2015. 3(2): p. 42-52.
    9. Liedtke, K.R., S. Bekeschus, A. Kaeding, C. Hackbarth, J.-P. Kuehn, C.-D. Heidecke, W. von Bernstorff, T. von Woedtke, and L.I. Partecke, Non-thermal plasma-treated solution demonstrates antitumor activity against pancreatic cancer cells in vitro and in vivo. Scientific Reports, 2017. 7(1): p. 1-12.
    10. Zhou, Y.-J., J. Ma, F. Li, T. Xian, Q.-H. Yuan, and Q.-F. Lu, Sensitivity improvement of solution cathode glow discharge-optical emission spectrometry by external magnetic field for optical determination of elements. Microchemical Journal, 2020. 158: p. 105224.
    11. Pohl, P., P. Jamroz, K. Swiderski, A. Dzimitrowicz, and A. Lesniewicz, Critical evaluation of recent achievements in low power glow discharge generated at atmospheric pressure between a flowing liquid cathode and a metallic anode for element analysis by optical emission spectrometry. TrAC Trends in Analytical Chemistry, 2017. 88: p. 119-133.
    12. Cserfalvi, T., P. Mezei, and P. Apai, Emission studies on a glow discharge in atmospheric pressure air using water as a cathode. Journal of Physics D: Applied Physics, 1993. 26(12): p. 2184.
    13. Zhu, Z., G.C.-Y. Chan, S.J. Ray, X. Zhang, and G.M. Hieftje, Use of a solution cathode glow discharge for cold vapor generation of mercury with determination by ICP-atomic emission spectrometry. Analytical Chemistry, 2008. 80(18): p. 7043-7050.
    14. Marcus, R.K., B.T. Manard, and C.D. Quarles, Liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasmas for diverse spectrochemical analysis applications. Journal of Analytical Atomic Spectrometry, 2017. 32(4): p. 704-716.
    15. Marcus, R.K., C.D. Quarles Jr, C.J. Barinaga, A.J. Carado, and D.W. Koppenaal, Liquid sampling-atmospheric pressure glow discharge ionization source for elemental mass spectrometry. Analytical Chemistry, 2011. 83(7): p. 2425-2429.
    16. Liu, X., Z. Liu, Z. Zhu, D. He, S. Yao, H. Zheng, and S. Hu, Generation of volatile cadmium and zinc species based on solution anode glow discharge induced plasma electrochemical processes. Analytical Chemistry, 2017. 89(6): p. 3739-3746.
    17. Liu, X., Z. Zhu, D. He, H. Zheng, Y. Gan, N.S. Belshaw, S. Hu, and Y. Wang, Highly sensitive elemental analysis of Cd and Zn by solution anode glow discharge atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 2016. 31(5): p. 1089-1096.
    18. Greda, K., S. Burhenn, P. Pohl, and J. Franzke, Enhancement of emission from indium in flowing liquid anode atmospheric pressure glow discharge using organic media. Talanta, 2019. 204: p. 304-309.
    19. Gorska, M., K. Greda, and P. Pohl, On the coupling of hydride generation (HG) with flowing liquid anode atmospheric pressure glow discharge (FLA-APGD) for determination of traces of As, Bi, Hg, Sb and Se by optical emission spectrometry (OES). Talanta, 2021. 222: p. 121510.
    20. Greda, K., M. Gorska, M. Welna, P. Jamroz, and P. Pohl, In-situ generation of Ag, Cd, Hg, In, Pb, Tl and Zn volatile species by flowing liquid anode atmospheric pressure glow discharge operated in gaseous jet mode–Evaluation of excitation processes and analytical performance. Talanta, 2019. 199: p. 107-115.
    21. Kitano, A., A. Iiduka, T. Yamamoto, Y. Ukita, E. Tamiya, and Y. Takamura, Highly sensitive elemental analysis for Cd and Pb by liquid electrode plasma atomic emission spectrometry with quartz glass chip and sample flow. Analytical Chemistry, 2011. 83(24): p. 9424-9430.
    22. Tung, N.H., M. Chikae, Y. Ukita, P.H. Viet, and Y. Takamura, Sensing technique of silver nanoparticles as labels for immunoassay using liquid electrode plasma atomic emission spectrometry. Analytical Chemistry, 2012. 84(3): p. 1210-1213.
    23. Olesik, J.W., Elemental analysis using icp-oes and icp/ms. Analytical Chemistry, 1991. 63(1): p. 12A-21A.
    24. Tyler, G. and S. Jobin Yvon, ICP-OES, ICP-MS and AAS Techniques Compared. ICP Optical Emission Spectroscopy Technical Note, 1995. 5.
    25. Van Loon, A.T., Analytical atomic absorption spectroscopy: selected methods. 2012: Elsevier.
    26. Cserfalvi, T. and P. Mezei, Direct solution analysis by glow discharge: electrolyte-cathode discharge spectrometry. Journal of Analytical Atomic Spectrometry, 1994. 9(3): p. 345-349.
    27. Cserfalvi, T. and P. Mezei, Investigations on the element dependency of sputtering process in the electrolyte cathode atmospheric discharge. Journal of Analytical Atomic Spectrometry, 2005. 20(9): p. 939-944.
    28. Webb, M.R., F.J. Andrade, G. Gamez, R. McCrindle, and G.M. Hieftje, Spectroscopic and electrical studies of a solution-cathode glow discharge. Journal of Analytical Atomic Spectrometry, 2005. 20(11): p. 1218-1225.
    29. Doroski, T.A., A.M. King, M.P. Fritz, and M.R. Webb, Solution–cathode glow discharge–optical emission spectrometry of a new design and using a compact spectrograph. Journal of Analytical Atomic Spectrometry, 2013. 28(7): p. 1090-1095.
    30. Greda, K., P. Jamroz, and P. Pohl, Effect of the addition of non-ionic surfactants on the emission characteristic of direct current atmospheric pressure glow discharge generated in contact with a flowing liquid cathode. Journal of Analytical Atomic Spectrometry, 2012. 28(1): p. 134-141.
    31. Xiao, Q., Z. Zhu, H. Zheng, H. He, C. Huang, and S. Hu, Significant sensitivity improvement of alternating current driven-liquid discharge by using formic acid medium for optical determination of elements. Talanta, 2013. 106: p. 144-149.
    32. Marcus, R.K. and W.C. Davis, An atmospheric pressure glow discharge optical emission source for the direct sampling of liquid media. Analytical Chemistry, 2001. 73(13): p. 2903-2910.
    33. Iiduka, A., Y. Morita, E. Tamiya, and Y. Takamura. Optical Emission Spectrometer of Aqueous Solution Samples Employing Liquid Electrode Plasma. in 8th International Conference on Miniaturized Systems for Chemical and Life Sciences. 2004. Malmö, Sweden: The Royal Socirety of Chemistry.
    34. Kohara, Y., Y. Terui, M. Ichikawa, T. Shirasaki, K. Yamamoto, T. Yamamoto, and Y. Takamura, Characteristics of liquid electrode plasma for atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 2012. 27(9): p. 1457-1464.
    35. Van Khoai, D., H. Miyahara, T. Yamamoto, P.T. Tue, A. Okino, and Y. Takamura, Development of AC-driven liquid electrode plasma for sensitive detection of metals. Japanese Journal of Applied Physics, 2016. 55(2S): p. 02BC23.
    36. Ruengpirasiri, P., P.T. Tue, H. Miyahara, A. Okino, and Y. Takamura, Study on effect of introduced gas bubbles for the low channel damage in direct and alternating current liquid electrode plasma atomic emission spectrometry. Japanese Journal of Applied Physics, 2019. 58(9): p. 097001.
    37. Kohara, Y., Y. Terui, M. Ichikawa, K. Yamamoto, T. Shirasaki, K. Kohda, T. Yamamoto, and Y. Takamura, Atomic emission spectrometry in liquid electrode plasma using an hourglass microchannel. Journal of Analytical Atomic Spectrometry, 2015. 30(10): p. 2125-2128.
    38. Sirotkin, N. and V. Titov, Transfer of liquid cathode components to the gas phase and their effect on the parameters of the atmospheric pressure dc discharge. Plasma Chemistry and Plasma Processing, 2017. 37(6): p. 1475-1490.
    39. Cserfalvi, T. and P. Mezei, Subnanogram sensitive multimetal detector with atmospheric electrolyte cathode glow discharge. Journal of Analytical Atomic Spectrometry, 2003. 18(6): p. 596-602.
    40. Schwartz, A.J., J.T. Shelley, C.L. Walton, K.L. Williams, and G.M. Hieftje, Atmospheric-pressure ionization and fragmentation of peptides by solution-cathode glow discharge. Chemical Science, 2016. 7(10): p. 6440-6449.
    41. Mezei, P. and T. Cserfalvi, A critical review of published data on the gas temperature and the electron density in the electrolyte cathode atmospheric glow discharges. Sensors, 2012. 12(5): p. 6576-6586.
    42. Raizer, Y.P. and J.E. Allen, Gas discharge physics. Vol. 2. 1997: Springer Berlin.
    43. Bruggeman, P., F. Iza, P. Guns, D. Lauwers, M.G. Kong, Y.A. Gonzalvo, C. Leys, and D.C. Schram, Electronic quenching of OH (A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH (A–X) emission. Plasma Sources Science and Technology, 2009. 19(1): p. 015016.
    44. Doyle, S. and K. Xu, Use of thermocouples and argon line broadening for gas temperature measurement in a radio frequency atmospheric microplasma jet. Review of Scientific Instruments, 2017. 88(2): p. 023114.
    45. Voráč, J., L. Kusýn, and P. Synek, Deducing rotational quantum-state distributions from overlapping molecular spectra. Review of Scientific Instruments, 2019. 90(12): p. 123102.
    46. Voráč, J., P. Synek, L. Potočňáková, J. Hnilica, and V. Kudrle, Batch processing of overlapping molecular spectra as a tool for spatio-temporal diagnostics of power modulated microwave plasma jet. Plasma Sources Science and Technology, 2017. 26(2): p. 025010.
    47. Voráč, J., P. Synek, V. Procházka, and T. Hoder, State-by-state emission spectra fitting for non-equilibrium plasmas: OH spectra of surface barrier discharge at argon/water interface. Journal of Physics D: Applied Physics, 2017. 50(29): p. 294002.
    48. Bruggeman, P., D.C. Schram, M.G. Kong, and C. Leys, Is the rotational temperature of OH (A–X) for discharges in and in contact with liquids a good diagnostic for determining the gas temperature? Plasma Processes and Polymers, 2009. 6(11): p. 751-762.
    49. Bruggeman, P., E. Ribežl, A. Maslani, J. Degroote, A. Malesevic, R. Rego, J. Vierendeels, and C. Leys, Characteristics of atmospheric pressure air discharges with a liquid cathode and a metal anode. Plasma Sources Science and Technology, 2008. 17(2): p. 025012.
    50. Bruggeman, P., D. Schram, M.Á. González, R. Rego, M.G. Kong, and C. Leys, Characterization of a direct dc-excited discharge in water by optical emission spectroscopy. Plasma Sources Science and Technology, 2009. 18(2): p. 025017.
    51. Moon, S.Y., W. Choe, H.S. Uhm, Y. Hwang, and J. Choi, Characteristics of an atmospheric microwave-induced plasma generated in ambient air by an argon discharge excited in an open-ended dielectric discharge tube. Physics of Plasmas, 2002. 9(9): p. 4045-4051.
    52. Webb, M.R., F.J. Andrade, and G.M. Hieftje, Use of electrolyte cathode glow discharge (ELCAD) for the analysis of complex mixtures. Journal of Analytical Atomic Spectrometry, 2007. 22(7): p. 766-774.
    53. Kumai, M. and Y. Takamura, Excitation temperature measurement in liquid electrode plasma. Japanese Journal of Applied Physics, 2011. 50(9R): p. 096001.
    54. Van Gaens, W. and A. Bogaerts, Kinetic modelling for an atmospheric pressure argon plasma jet in humid air. Journal of Physics D: Applied Physics, 2013. 46(27): p. 275201.
    55. Yu, J., X. Zhang, Q. Lu, X. Wang, D. Sun, Y. Wang, and W. Yang, Determination of calcium and zinc in gluconates oral solution and blood samples by liquid cathode glow discharge-atomic emission spectrometry. Talanta, 2017. 175: p. 150-157.
    56. Jamróz, P., P. Pohl, and W. Żyrnicki, An analytical performance of atmospheric pressure glow discharge generated in contact with flowing small size liquid cathode. Journal of Analytical Atomic Spectrometry, 2012. 27(6): p. 1032-1037.
    57. Kramida, A., Ralchenko, Yu., Reader, J. and NIST ASD Team, NIST Atomic Spectra Database (version 5.8). 2020, National Institute of Standards and Technology, Gaithersburg, MD.
    58. Sainct, F.P., K. Urabe, E. Pannier, D.A. Lacoste, and C.O. Laux, Electron number density measurements in nanosecond repetitively pulsed discharges in water vapor at atmospheric pressure. Plasma Sources Science and Technology, 2020. 29(2): p. 025017.
    59. Zhu, X.-M., W.-C. Chen, and Y.-K. Pu, Gas temperature, electron density and electron temperature measurement in a microwave excited microplasma. Journal of Physics D: Applied Physics, 2008. 41(10): p. 105212.
    60. Laux, C.O., T. Spence, C. Kruger, and R. Zare, Optical diagnostics of atmospheric pressure air plasmas. Plasma Sources Science and Technology, 2003. 12(2): p. 125.
    61. Bruggeman, P., J. Degroote, J. Vierendeels, and C. Leys, DC-excited discharges in vapour bubbles in capillaries. Plasma Sources Science and Technology, 2008. 17(2): p. 025008.
    62. Bruggeman, P., J. Degroote, C. Leys, and J. Vierendeels, Electrical discharges in the vapour phase in liquid-filled capillaries. Journal of Physics D: Applied Physics, 2008. 41(19): p. 194007.
    63. Dolan, T., Electron and ion collisions with water vapour. Journal of Physics D: Applied Physics, 1993. 26(1): p. 4.
    64. Cserfalvi, T. and P. Mezei, Operating mechanism of the electrolyte cathode atmospheric glow discharge. Fresenius' Journal of Analytical Chemistry, 1996. 355(7): p. 813-819.
    65. Faure, G. and S. Shkol'Nik, Determination of rotational and vibrational temperatures in a discharge with liquid non-metallic electrodes in air at atmospheric pressure. Journal of Physics D: Applied Physics, 1998. 31(10): p. 1212.
    66. Kramida, A., Ralchenko, Yu., Reader, J., NIST ASD Team, NIST Atomic Spectra Database (ver. 5.8), [Online]. 2020: National Institute of Standards and Technology, Gaithersburg, MD.
    67. Wang, Z., A.J. Schwartz, S.J. Ray, and G.M. Hieftje, Determination of trace sodium, lithium, magnesium, and potassium impurities in colloidal silica by slurry introduction into an atmospheric-pressure solution-cathode glow discharge and atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 2013. 28(2): p. 234-240.
    68. Greda, K., A. Szymczycha-Madeja, and P. Pohl, Study and reduction of matrix effects in flowing liquid anode-atmospheric pressure glow discharge-optical emission spectrometry. Analytica Chimica Acta, 2020. 1123: p. 81-90.
    69. Greda, K., K. Swiderski, P. Jamroz, and P. Pohl, Flowing liquid anode atmospheric pressure glow discharge as an excitation source for optical emission spectrometry with the improved detectability of Ag, Cd, Hg, Pb, Tl, and Zn. Analytical Chemistry, 2016. 88(17): p. 8812-8820.
    70. Peng, X., X. Guo, F. Ge, and Z. Wang, Battery-operated portable high-throughput solution cathode glow discharge optical emission spectrometry for environmental metal detection. Journal of Analytical Atomic Spectrometry, 2019. 34(2): p. 394-400.
    71. Yuan, M., X. Peng, F. Ge, Q. Li, K. Wang, D.-G. Yu, and Z. Wang, Simplified design for solution anode glow discharge atomic emission spectrometry device for highly sensitive detection of Ag, Bi, Cd, Hg, Pb, Tl, and Zn. Microchemical Journal, 2020. 155: p. 104785.
    72. Bruggeman, P., N. Sadeghi, D. Schram, and V. Linss, Gas temperature determination from rotational lines in non-equilibrium plasmas: a review. Plasma Sources Science and Technology, 2014. 23(2): p. 023001.
    73. Bruggeman, P., T. Verreycken, D.C. Schram, M.G. Kong, and C. Leys. Measurement of the gas temperature in plasmas in and in contact with liquids. in 19th International symposium on Plasma Chemistry (ISPC 19). 2009.
    74. Tsumaki, M. and T. Ito, Optical emission spectroscopy of atmospheric-pressure non-equilibrium plasma with mist injection. AIP Advances, 2017. 7(12): p. 125211.
    75. De Izarra, C., UV OH spectrum used as a molecular pyrometer. Journal of Physics D: Applied Physics, 2000. 33(14): p. 1697.
    76. De Baerdemaeker, F., M. Šimek, J. Schmidt, and C. Leys, Characteristics of ac capillary discharge produced in electrically conductive water solution. Plasma Sources Science and Technology, 2007. 16(2): p. 341.
    77. Bruggeman, P., C. Leys, and J. Vierendeels, Experimental investigation of dc electrical breakdown of long vapour bubbles in capillaries. Journal of Physics D: Applied Physics, 2007. 40(7): p. 1937.
    78. Gershman, S. and A. Belkind, Time-resolved processes in a pulsed electrical discharge in argon bubbles in water. The European Physical Journal D, 2010. 60(3): p. 661-672.
    79. Webb, M.R., G.C.-Y. Chan, F.J. Andrade, G. Gamez, and G.M. Hieftje, Spectroscopic characterization of ion and electron populations in a solution-cathode glow discharge. Journal of Analytical Atomic Spectrometry, 2006. 21(5): p. 525-530.
    80. Manjusha, R., R. Shekhar, and S. Jaikumar, Direct determination of impurities in high purity chemicals by electrolyte cathode discharge atomic emission spectrometry (ELCAD-AES). Microchemical Journal, 2019. 145: p. 301-307.
    81. Swiderski, K., A. Dzimitrowicz, P. Jamroz, and P. Pohl, Influence of pH and low-molecular weight organic compounds in solution on selected spectroscopic and analytical parameters of flowing liquid anode atmospheric pressure glow discharge (FLA-APGD) for the optical emission spectrometric (OES) determination of Ag, Cd, and Pb. Journal of Analytical Atomic Spectrometry, 2018. 33(3): p. 437-451.
    82. Titov, V., V. Rybkin, S. Smirnov, A. Kulentsan, and H.-S. Choi, Experimental and theoretical studies on the characteristics of atmospheric pressure glow discharge with liquid cathode. Plasma Chemistry and Plasma Processing, 2006. 26(6): p. 543-555.
    83. Mezei, P. and T. Cserfalvi, Charge densities in the electrolyte cathode atmospheric glow discharges (ELCAD). The European Physical Journal Applied Physics, 2007. 40(1): p. 89-94.
    84. Mezei, P., T. Cserfalvi, and L. Csillag, The spatial distribution of the temperatures and the emitted spectrum in the electrolyte cathode atmospheric glow discharge. Journal of Physics D: Applied Physics, 2005. 38(16): p. 2804.
    85. Yuan, H., X.-F. Zhou, Y. Nie, Y. Li, J.-P. Liang, D.-Z. Yang, E.-Y. Yan, W.-C. Wang, and Y. Xu, Temporal resolved atomic emission spectroscopy on a pulsed electrolyte cathode discharge for improving the detection sensitivity of Cu. Spectrochimica Acta Part B: Atomic Spectroscopy, 2021. 177: p. 106072.

    無法下載圖示 全文公開日期 2032/01/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE