簡易檢索 / 詳目顯示

研究生: 李承祐
CHENG-YOU LI
論文名稱: 定電流-複合弦波電壓充電法應用於 鋰離子電池老化回復
Application of Reviving Aged Li-ion Batteries Using Constant Current-Composite Sinusoidal Voltage Charging Strategy
指導教授: 羅一峰
Yi-Feng Luo
劉益華
Yi-Hua Liu
口試委員: 王順忠
Shun-Chung Wang
鄭于珊
Yu-Shan Cheng
楊宗振
Zong-Zhen Yang
劉益華
Yi-Hua Liu
羅一峰
Yi-Feng Luo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 81
中文關鍵詞: 複合弦波電壓充電法鋰離子電池健康度定電流-定電壓充電法
外文關鍵詞: Composite Sinusoidal Voltage Charging Strategy, State of Health(SOH), Constant Current-Constant Voltage Charging Strategy
相關次數: 點閱:246下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在鋰離子電池的使用中,電池老化一直是令人詬病的缺點,而其
中影響老化程度最大的即是充電技術。現今可降低鋰離子電池老化程
度的充電技術中,其多半是在充電時間、電流大小、充入容量、電池
溫升以及使用壽命之間做權衡,進而達到延緩老化的目的。對此本文
提出定電流-複合弦波電壓的充電策略,透過在充電過程之定電壓段
給予一放電區間,達到回復鋰離子電池健康度的目的,同時透過找尋
鋰離子電池交流阻抗最小頻率點以縮小充電過程中的損失,進而達到
縮短充電時間之目的。經由實驗驗證後,本文所提出之充電策略在鋰
離子電池健康度分別為88.14%以及77.26%時,可分別改善0.26%以
及1.85%,與標準型定電流-定電壓充電法相比,充電時間在健康度分
別為88.14%、77.26%以及69.9%情況下,可分別縮短9.14%、18.44%、
8.15%。


In the use of lithium-ion batteries, battery aging has always been a
criticized shortcoming, and the most influential one of battery aging is the
charging technology. In the charging-related research which avoids the
aging of lithium-ion batteries, most of them are to make trade-offs among
charging time, current level, charging capacity, battery temperature rise,
and cycle life, to achieve the purpose of reduced aging effect. In this regard,
this thesis proposes a charging strategy of constant current and C sine wave
voltage. By adding a discharge interval during the charging process, the
purpose of restoring the state-of-health (SOH) of the lithium-ion battery is
achieved, and at the same time, by finding the minimum frequency point
of the AC impedance of the lithium-ion battery, the charging time can be
reduced. After the experimental verification, the charging strategy
proposed in this thesis can improve the lithium-ion battery’s SOH by
0.26% and 1.85% when the SOH of the lithium-ion battery is 88.14% and
77.26%, respectively. Compared with the standard constant currentconstant
voltage charging method, when the SOH is 88.14%, 77.26%, and
69.9%, the charging time can be shortened by 9.14%, 18.44%, and 8.15%
respectively.

摘要 ............................................................................................................. I Abstract ...................................................................................................... II 誌謝 ........................................................................................................... III 目錄 .......................................................................................................... VI 圖目錄 ...................................................................................................... IX 表目錄 ..................................................................................................... XII 第一章 緒論............................................................................................... 1 1.1 研究背景 ..................................................................................... 1 1.2 文獻探討 ..................................................................................... 1 1.3 研究動機與目標 ......................................................................... 3 1.4 論文大綱 ..................................................................................... 3 第二章 鋰離子電池與鋰離子電池充電技術介紹 .................................. 5 2.1 鋰離子電池相關專有名詞介紹 ................................................. 5 2.2 鋰離子電池種類介紹 ................................................................. 7 2.3 二次電池充電技術介紹 ............................................................. 9 2.3.1 定電壓充電法[17] ............................................................ 9 2.3.2 定電流充電法[17] .......................................................... 10 2.3.3 定電流-定電壓充電法[17] ............................................ 11 2.3.4 多階段定電流充電法[2-7]、[22-26] ............................ 11 2.3.5 脈衝充電法[8-11] .......................................................... 12 2.3.6 弦波電流充電法[14-15] ................................................ 13 2.3.7 弦波電壓充電法[16] ...................................................... 14 2.4 本文選用之電池介紹 ............................................................... 14 VII 第三章 鋰離子電池等效模型與健康度介紹 ........................................ 16 3.1 鋰離子電池等效電路模型 ....................................................... 16 3.1.1 線性電池等效模型 ........................................................ 16 3.1.2 戴維寧電池等效模型 .................................................... 17 3.1.3 鋰離子交流阻抗等效模型 ............................................ 17 3.2 鋰離子之交流阻抗分析介紹 ................................................... 18 3.2.1 交流阻抗分析系統架構 ................................................ 19 3.2.2 交流阻抗分析系流程 .................................................... 20 3.3 個別效應描述 ........................................................................... 21 3.4 鋰離子電池阻抗最小頻率點定義 ........................................... 22 3.5 鋰離子電池健康度與交流阻抗關係之介紹 ............................ 22 3.5.1 鋰離子電池健康度衰退 ................................................ 22 3.5.2 鋰離子電池健康度衰退與交流阻抗之關係 ................ 23 3.5.3 鋰離子電池固態電解質介面膜消除 ............................ 24 第四章 定電流-複合弦波電壓充電法 ................................................... 25 4.1 複合弦波電壓定義 ................................................................... 25 4.1.1 複合弦波電壓振幅設計 ................................................ 25 4.1.2 複合弦波電壓頻率設定 ................................................ 27 4.1.3 CASE 1 及CASE 2 比較 ................................................ 28 4.2 定電流-複合弦波電壓充電法 .................................................. 28 4.3 監測與控制平台介紹 ............................................................... 29 4.3.1 LabVIEW 簡介 ................................................................ 29 4.3.2 監控介面介紹 ................................................................. 30 第五章 電池充電機介紹 ........................................................................ 33 5.1 雙向降/升壓轉換器介紹 .......................................................... 34 VIII 5.2 雙向降/升壓轉換器元件設計 .................................................. 42 5.3 韌體架構 ................................................................................... 44 5.3.1 數位訊號處理器 ............................................................ 44 5.3.2 程式設計流程介紹 ........................................................ 46 第六章 實驗結果與分析 ........................................................................ 48 6.1 實驗設計 ................................................................................... 48 6.2 實測環境 ................................................................................... 50 6.3 實驗結果 ................................................................................... 51 第七章 結論與未來展望 ........................................................................ 62 7.1 結論 ........................................................................................... 62 7.2 未來展望 ................................................................................... 62 參考文獻 ................................................................................................... 63

[1] P. H. L. Notten, J. H. G. Op het Veld, and J. R. G. van Beek, “Boostcharging Li-ion batteries: A challenging new charging concept,” Journal of power Source, vol. 145, no. 1, pp. 89-94, July 2005.
[2] 羅一峰,「運用田口方法之鋰電池最佳化快速充電波形搜尋」,台灣科技大學電機工程博士論文,民國九十九年八月。
[3] 劉元凱,「以電池模型為基礎之五階段定電流充電法最佳充電電流值搜尋」,台灣科技大學電機工程碩士論文,民國一百零七年六月。
[4] 陳品行,「基於剩餘容量之最佳化五階段定電流充電法之研究」,台灣科技大學電機工程碩士論文,民國一百一十年六月。
[5] A. B. Khan, V. L. Pham, T. T. Nguyen, and W. Choi, “Multistage Constant-Current Charging Method for Li-ion Batteries,” IEEE Transportation Electrification Conference and Expo (ITEC), 2016.
[6] Z. Chen, B. Xia, C. C. Mi, and R. Xiong, “Loss-Minimization-Based Charging Strategy for Lithium-Ion Battery,” IEEE Transactions on Industrial Applications, vol. 51, no. 5, Sept. 2015.
[7] J.W. Huang, Y.H. Liu, S.C. Wang, Z.Z. Yang, “Fuzzy-Control-Based Five-Step Li-Ion Battery Charger,” IEEE International Conference on Power Electronics and Drive Systems (PEDS), 2009.
[8] L. R. Chen, “A design of an optimal battery pulse charge system by frequency-varied technique,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp.398-405, Feb 2007.
[9] L. R. Chen, “A design of duty-varied voltage pulse charger for improving Lithium-ion battery-charging response,” IEEE Trans. Ind. Electron., vol. 56, no. 2, pp.480-487, Feb. 2009.
[10] B. K. Purushothama, P. W. Morrison, Jr., and U. Landau, “Reducing mass-transport limitations by application of special pulsed current modes,” Journal of The Electrochemical Society, vol. 152, no. 4, pp. J33-J39, 2005.
[11] B. K. Purushothama and U. Landau, “Rapid charging of Lithium-ion batteries using pulsed current,” Journal of The Electrochemical Society, vol. 153, no. 3, pp. A533-A542, 2006.
[12] P.E. De Jongh, P.H.L. Notten, “Effect of Current Pulses on Lithium Intercalation Batteries,” Solid State Ionics 148, 2002, pp. 259-268.
[13] J. Li, E. Murphy, J. Winnick, P. A. Kohl, “The Effects of Pulse Charging on Cycling Characteristics of Commercial Lithium-Ion Batteries,” Journal of Power Sources, 102 (2001), pp. 302-309
[14] L. R. Chen, S. L. Wu, D. T. Shieh and T. R. Chen, “Sinusoidal-Ripple-Current Charging Strategy and Optimal Charging Frequency Study for Li-Ion Batteries”, IEEE Transaction on Industrial Electronics., vol. 60, no.1, pp. 88-97, Jan. 2013.
[15] Y. Lee and S. Park, “Electrochemical state-based sinusoidal ripple currentcharging control,” IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4232–4243, Aug. 2015.
[16] P. T. Chen, F.H Yang, Z. T. Cao, J. M. Jhang, H. M. Gao, M. H. Yang and K. D. Huang, “Reviving Aged lithium-ion Batteries and Prolonging their Cycle Life by Sinusoidal Waveform Charging Strategy”, Batteries and Supercaps, vol. 2, pp.673-677, 2019
[17] 孫清華,「可充電電池技術大全」,全華科技圖書股份有限公司,2003年9月。
[18] 屠海令、吳伯榮、朱磊,「先進電池-電化學電源導論」,工業出版社冶金,2006年5月。
[19] 陳羿廷、陳玉惠,「高分子電解質在鋰二次電池上之應用研究現況」,中原大學化學研究所專題報導,民國九十三年第六十二卷第四期。
[20] L. Liua, M. Lia, L. Chua, B. Jianga, L. Ruoxub, Z. Xiaopeib, and G. Cao, “Layered ternary metal oxides: Performance degradation mechanisms as cathodes, and design strategies for highperformance batteries,” Progress in Materials Science, vol.111, June 2020.
[21] 林世彬,「鋰離子二次電池陰極材料LiNiO2之合成及其性質」,成功大學材料科學及工程學系博士論文,2002年6月。
[22] Y. H. Liu, C. H. Hsieh, and Y. F. Luo, “Search for an optimal rapid charging pattern for Li-ion batteries using consecutive orthogonal arrays,” IEEE Trans. Ind. Electron., vol. 26, no. 2, pp. 654–661, 2011.
[23] Y. H. Liu and Y. F. Luo, “Search for an optimal rapid charging pattern for Li-ion batteries using Taguchi approach,” IEEE Trans. Ind. Electron, vol. 57, no. 12, pp. 3963–3971, Dec. 2010.
[24] Y. H. Liu, J. H. Teng, and Y. C. Lin, “Search for an optimal rapid charging pattern for Li-ion batteries using ant colony system algorithm,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1328–1336, Oct. 2005.
[25] C. H. Lee, M. Y. Chen, S. H. Hsu, and J. A. Jiang, “Implementation of an SOC-based four-stage constant current charger for Li-ion batteries,” Journal of Energy Storage, vol. 18, pp. 528–537, August 2018.
[26] C. H. Lee, T. W. Chang, S. H. Hsu, and J. A. Jiang, “Taguchi-based PSO for searching an optimal four-stage charge pattern of Li-ion batteries,” Journal of Energy Storage, vol. 21, pp. 301–309, February 2019.
[27] Samsung Inc., “Lithium Ion Battery-ICR18650-26J” Specification of product, ver. 2.0, 2016.
[28] 蕭子建、王智昱、儲昭偉,「LABVIEW進階篇」,高立圖書,民國八十九年五月。
[29] 蕭子建、王智昱、儲昭偉,「虛擬儀控程式設計-LABVIEW7X」,高立圖書,民國九十三年三月。
[30] Texas Instruments,“TMS320F28004x Piccolo Microcontrollers,” Available at http://www.ti.com/

無法下載圖示 全文公開日期 2025/08/09 (校內網路)
全文公開日期 2027/08/09 (校外網路)
全文公開日期 2027/08/09 (國家圖書館:臺灣博碩士論文系統)
QR CODE