簡易檢索 / 詳目顯示

研究生: 曹翔雁
Hsiang-Yen Tsao
論文名稱: Poly(fluorene vinylene) and Poly(thiophene vinylene) Containing 2,2’-Bis(trifluoromethyl)-4,4’-biphenylene Moiety:Synthesis, Characterization and High Photoluminescence
Poly(fluorene vinylene) and Poly(thiophene vinylene) Containing 2,2’-Bis(trifluoromethyl)-4,4’-biphenylene Moiety:Synthesis, Characterization and High Photoluminescence
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 陳耀騰
Yaw-Terng Chern
蕭勝輝
Sheng-Huei Hsiao
劉貴生
Guey-Sheng Liou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 72
中文關鍵詞: 聚芴聚塞吩拉電子基團
外文關鍵詞: fluorene, thiophene, electron-withdrawing group
相關次數: 點閱:360下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究成功將2,2’-bis(trifluoromethyl)-4,4’-bis(diethyl methylenephosphonate)biphenyl與9,9’-dioctylfluorene-2,7-dicarbaldehyde、thiophene-2,5-dicarbaldehyde以Horner-Emmons方法合成新型共軛高分子PFV-CF3、PTV-CF3。PFV-CF3和PTV-CF3的數目平均分子量(Mn)分別為34000、13000。PFV-CF3和PTV-CF3的5%熱裂解溫度(Td)分別為394℃和436℃,玻璃轉移溫度(Tg)則是125℃和190℃,顯示擁有好的熱穩定性。PTV-CF3因未接入長脂肪鏈,所以有較高的Tg、Td,但同時仍擁有極佳的溶解度,在室溫下即可溶於DMSO、NMP、DMAc、DMF、THF及1,2-dichlorobenzene。在UV-Visible吸收光譜中,PFV-CF3、PTV-CF3的最大吸收長分別為404和407nm,從光譜中可以看出並無ICT(intramolecular charge transfer)效應的產生。光激發螢光光譜(PL)顯示,最大放光波長則為420和448nm,螢光量子效率為92和42%,這與PFV及PTV homopolymer相比均有明顯提升。PFV-CF3、PTV-CF3的最高占有電子軌域能階(HOMO)分別為-5.80和-5.30 eV,最低未占有電子軌域能階(LUMO)則是-3.31和-3.27 eV。我們和各種不同的拉電子基團作為比較,可以發現我們所合成的PFV-CF3、PTV-CF3的HOMO能階均較低,顯示本實驗室所合成的新型含有三氟甲基之聯苯結構為一強拉電子基團,能有效降低HOMO能階,可以做為將來設計新型共軛高分子時拉電子基團的新選擇。將PFV-CF3、PTV-CF3當發光層並製成兩種不同元件結構的PLED,其PFV-CF3、PTV-CF3在元件結構為ITO/PEDOT:PSS/Emission layer /BCP/LiF/Ca/Al達到最大亮度及最大發光效率,分別為2571 cdm-2、4.79 cdA-1和618 cdm-2、2.03 cdA-1。利用OTFT測得PFV-CF3、PTV-CF3的電子及電洞mobility,分別為5.4 × 10-4、8.7 × 10-4 cm2/Vs及1.0 × 10-4、2.7 × 10-3 cm2/Vs。結果顯示導入含有三氟甲基之聯苯結構能有效平衡電荷傳輸能力。


New fluorescent fluorene vinylene and thiophene vinylene copolymers incorporating 2,2’-bis(trifluoromethyl)-4,4’-biphenylene were synthesized by Horner-Emmons reaction (PFV-CF3、PTV-CF3). The number average molecular weights (Mn) of PFV-CF3 and PTV-CF3 were 34000 and 13000, respectively. PFV-CF3 and PTV-CF3 had high glass transition temperatures (Tg = 125℃ and 190℃) and outstanding thermal stability (Td =394℃ and 436℃ ). Because PTV-CF3 didn’t have alkyl substituent on thiophene ring, the copolymer had higher glass transition temperatures and the temperature at 5% weight loss. PTV-CF3 also had good solubility that can dissolve in common organic solvent, such as DMSO, NMP, DMAc, DMF, THF and 1,2-dichlorobenzene. The UV-Visible absorption spectra exhibited the absorption maxima of PFV-CF3、PTV-CF3 at 404 and 407 nm, respectively. The PL emission spectra exhibited the emission maxima of PFV-CF3、PTV-CF3 at 420 and 448 nm, and the PL quantum yield were 92 and 42%, respectively. The PL quantum yield was higher than the homopolymer PFV and PTV. The HOMO levels of the PFV-CF3 and PTV-CF3 were -5.80 and -5.30 eV, and the LUMO levels were -3.31 and -3.27 eV。Campared with different electron with-drawing group, and we found that the PFV-CF3 and PTV-CF3 of the HOMO levels were the lowest. So we can consider that 2,2’-bis(trifluoromethyl)-4,4’-bis(diethyl methylenephosphonate)biphenyl was the strong with-drawing group. Polymer lightemitting diodes using PFV-CF3 or PTV-CF3 as the emission layer (ITO/PEDOT:PSS/Emission layer /BCP/LiF/Ca/Al) had the maximum luminance (2571 cdm-2、618 cdm-2) and the maximum luminance efficiency (4.79 cdA-1、2.03 cdA-1). Organic thin-film transistors made of PFV-CF3 and PTV-CF3 showed balance charge mobility, the electron mobility were 5.4 × 10-4 and1.0 × 10-4 cm2/Vs and hole mobility were 2.7 × 10-3 and 8.7 × 10-4cm2/Vs, respectively. The result incidered that 2,2’-bis(trifluoromethyl)-4,4’-biphenylene introduced the electron-donating conjugated polymer can efficiency balance the charge mobility.

目錄 摘要…………………………………………………………………………………….I 目錄…………………………………………………………………………...……...IV Figure 索引…………...……………………………………………………….…….VI Scheme 索引……..……………………………………………………………….…IX Table索引…………………………….…………………………………....………….X 第一章 緒論…………………………………………………………………………..1 1.1 前言………………………………………………………………………..……..1 1.2 基礎理論………………………………………………………………………....2 1.2.1 能帶理論……………………………………………………………………2 1.2.2 共軛高分子的導電理論……………………………………………………3 1.3 有機電激發光……………………………………………………………………4 1.3.1 發展歷程……………………………………………………………………4 1.3.2 有機電激發光元件的發光原理……………………………………………5 1.3.3 螢光與磷光…………………………………………………………………6 1.3.4 發光機制……………………………………………………………………8 1.3.5 影響螢光特性的因素………………………………………………………9 1.3.6 元件結構………………………………………………………………..…12 第二章 文獻回顧…………………………………………………………..………..14 2.1 前言………………………………………………………………………..……14 2.2 Polyfluorene及其衍生物………………………………………………………14 2.3 Polythiophene及其衍生物……………………………………………………..20 2.4 有機薄膜電晶體………………………………………………………………..27 第三章 實驗…………………………………………………………………………30 3.1 實驗儀器……………………………………………………………..…………30 3.2 實驗藥品……………………………………………………………………..…31 3.3 單體合成………………………………………………………………..………33 3.4 高分子合成………………………………………………………………..……39 3.5 高分子薄膜製備…………………………………………………………..……40 3.6 PLED元件製作……………………………………………………………...…40 3.7 OTFT元件製作……………………………………………………………...…41 第四章 結果與討論…………………………………………………………………42 4.1 合成與表徵…………………………………………………………………..…42 4.1.1 單體的合成與表徵……………………………………………………..…44 4.1.2 高分子的合成與表徵…………………………………………………..…46 4.2 熱學性質…………………………………………………………………..……49 4.3 光學特性……………………………………………………………………..…51 4.4 電化學特性………………………………………………………………..……57 4.5 PLED元件特性…………………………………………………………...……60 4.6 OTFT元件特性………………………………………………………………...67 第五章 結論…………………………………………………………………………69 參考文獻……………………………………………………………………………..70

[1] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang and A. J. Heeger, Journal of the Chemical Society, Chemical Communications 1977, 578-580.
[2] 陳德請, 近代光電顯示工程導論,全華 2006.
[3] 陳文章, 國立台灣大學陳文章教授授課講義, 網路資源.
[4] M. Pope, H. P. Kallmann and P. Magnante, The Journal of Chemical Physics 1963, 38, 2042-2043.
[5] C. W. Tang and S. A. Vanslyke, Applied Physics Letters 1987, 51, 913-915.
[6] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature 1990, 347, 539-541.
[7] D. Braun and A. J. Heeger, Applied Physics Letters 1991, 58, 1982-1984.
[8] S. M. Grayson and J. M. J. Frechet, Chemical Reviews 2001, 101, 3819-3867.
[9] C. H. Chou and C. F. Shu, Macromolecules 2002, 35, 9673-9677.
[10] I. Prieto, J. Teetsov, M. A. Fox, D. A. Vanden Bout and A. J. Bard, Journal of Physical Chemistry A 2001, 105, 520-523.
[11] S. A. Jenekhe, L. Lu and M. M. Alam, Macromolecules 2001, 34, 7315-7324.
[12] E. J. W. List, R. Guentner, P. De Scanducci Freitas and U. Scherf, Advanced Materials 2002, 14, 374-378.
[13] J. Y. Li, A. Ziegler and G. Wegner, Chemistry - A European Journal 2005, 11, 4450-4457.
[14] J. P. Amara and T. M. Swager, Macromolecules 2006, 39, 5753-5759.
[15] L. H. Chan, Y. D. Lee and C. T. Chen, Macromolecules 2006, 39, 3262-3269.
[16] H. Zhang, Y. Li, Q. Jiang, M. Xie, J. Peng and Y. Cao, Journal of Materials Science 2007, 42, 4476-4479.
[17] W. C. Wu, C. L. Liu and W. C. Chen, Polymer 2006, 47, 527-538.
[18] R. Yang, R. Tian, Q. Hou, W. Yang and Y. Cao, Macromolecules 2003, 36, 7453-7460.
[19] C. Kitamura, S. Tanaka and Y. Yamashita, Chemistry of Materials 1996, 8, 570-578.
[20] P. Herguth, X. Jiang, M. S. Liu and A. K. Y. Jen, Macromolecules 2002, 35, 6094-6100.
[21] Z. T. Liu, Y. Y. Huang, Y. Li, Y. M. He and Q. H. Fan, Journal of Polymer Science, Part A: Polymer Chemistry 2011, 49, 680-689.
[22] Y. Jin, J. Ju, J. Kim, S. Lee, J. Y. Kim, S. H. Park, S. M. Son, S. H. Jin, K. Lee and H. Suh, Macromolecules 2003, 36, 6970-6975.
[23] S. H. Jin, M. Y. Kim, D. S. Koo, Y. I. Kim, S. H. Park, K. Lee and Y. S. Gal, Chemistry of Materials 2004, 16, 3299-3307.
[24] J. A. Mikroyannidis, Y. J. Yu, S. H. Lee and J. I. Jin, Journal of Polymer Science, Part A: Polymer Chemistry 2006, 44, 4494-4507.
[25] J. A. Mikroyannidis, K. M. Gibbons, A. P. Kulkami and S. A. Jenekhe, Macromolecules 2008, 41, 663-674.
[26] H. Saadeh, T. Goodson Iii and L. Yu, Macromolecules 1997, 30, 4608-4612.
[27] O. Inganas, W. R. Salaneck, J. E. Osterholm and J. Laakso, Synthetic Metals 1988, 22, 395-406.
[28] G. Zerbi, B. Chierichetti and O. Inganas, The Journal of Chemical Physics 1991, 94, 4646-4658.
[29] Y. Ohmori and K. Kuriyama, Neurochemical Research 1991, 16, 357-362.
[30] D. Braun, G. Gustafsson, D. McBranch and A. J. Heeger, Journal of Applied Physics 1992, 72, 564-568.
[31] S. H. Ahn, M. Z. Czae, E. R. Kim, H. Lee, S. H. Han, J. Noh and M. Hara, Macromolecules 2001, 34, 2522-2527.
[32] W. Huang, W. L. Yu, H. Meng, J. Pei and S. F. Y. Li, Chemistry of Materials 1998, 10, 3340-3345.
[33] H. Meng and W. Huang, Journal of Organic Chemistry 2000, 65, 3894-3901.
[34] A. P. Kulkarni, C. J. Tonzola, A. Babel and S. A. Jenekhe, Chemistry of Materials 2004, 16, 4556-4573.
[35] Q. Hou, Y. Xu, W. Yang, M. Yuan, J. Peng and Y. Cao, Journal of Materials Chemistry 2002, 12, 2887-2892.
[36] Q. Hou, Q. Zhou, Y. Zhang, W. Yang, R. Yang and Y. Cao, Macromolecules 2004, 37, 6299-6305.
[37] K. Y. Musick, Q. S. Hu and L. Pu, Macromolecules 1998, 31, 2933-2942.
[38] Y. Liu, G. Yu, A. K. Y. Jen, Q. S. Hu and L. Pu, Macromolecular Chemistry and Physics 2002, 203, 37-40.
[39] H. Fuchigami, A. Tsumura and H. Koezuka, Applied Physics Letters 1993, 63, 1372-1374.
[40] F. C. Grozema, P. T. Van Duijnen, L. D. A. Siebbeles, A. Goossens and S. W. De Leeuw, Journal of Physical Chemistry B 2004, 108, 16139-16146.
[41] A. J. Brassett, N. F. Colaneri, D. D. C. Bradley, R. A. Lawrence, R. H. Friend, H. Murata, S. Tokito, T. Tsutsui and S. Saito, Physical Review B 1990, 41, 10586-10594.
[42] S. C. Moratti, R. Cervini, A. B. Holmes, D. R. Baigent, R. H. Friend, N. C. Greenham, J. Gruner and P. J. Hamer, Synthetic Metals 1995, 71, 2117-2120.
[43] D. R. Baigent, P. J. Hamer, R. H. Friend, S. C. Moratti and A. B. Holmes, Synthetic Metals 1995, 71, 2175-2176.
[44] B. Chen, Y. Wu, M. Wang, S. Wang, S. Sheng, W. Zhu, R. Sun and H. Tian, European Polymer Journal 2004, 40, 1183-1191.
[45] J. F. Morin, N. Drolet, Y. Tao and M. Leclerc, Chemistry of Materials 2004, 16, 4619-4626.
[46] C. J. Tonzola, M. M. Alam and S. A. Jenekhe, Macromolecules 2005, 38, 9539-9547.
[47] L. Huo, T. L. Chen, Y. Zhou, J. Hou, H. Y. Chen, Y. Yang and Y. Li, Macromolecules 2009, 42, 4377-4380.
[48] S. Jeeva, O. Lukoyanova, A. Karas, A. Dadvand, F. Rosei and D. F. Perepichka, Advanced Functional Materials 2010, 20, 1661-1669.
[49] L. S. Hung, Thin Solid Films 2000, 363, 47-50.
[50] Z. Bao and J. Locklin, Organic Field-Effect Transistors CRC Press 2007.
[51] M. Ahles, A. Hepp, R. Schmechel and H. Von Seggern, Applied Physics Letters 2004, 84, 428-430.
[52] J. Zaumseil, C. L. Donley, J. S. Kim, R. H. Friend and H. Sirringhaus, Advanced Materials 2006, 18, 2708-2712.
[53] J. C. Chiu, C. C. Chu and J. C. Chen, Annual Meeting of Polymer Society, Taiwan 2010, BO-23.
[54] E. L. Johnson, Chemical Abstracts 1957, 51, 6169.
[55] S. Y. P. D. D. Wang, The University of Akron 1995.
[56] D. W. Price Jr and J. M. Tour, Tetrahedron 2003, 59, 3131-3156.
[57] W. Wang, J. Xu, Y. H. Lai and F. Wang, Macromolecules 2004, 37, 3546-3553.
[58] J. Mei, N. C. Heston, S. V. Vasilyeva and J. R. Reynolds, Macromolecules 2009, 42, 1482-1487.
[59] B. Liu, W. L. Yu, Y. H. Lai and W. Huang, Chemistry of Materials 2001, 13, 1984-1991.
[60] W. J. Mitchell, C. Pena and P. L. Burn, Journal of Materials Chemistry 2002, 12, 200-205.
[61] T. Yamamoto, Z. H. Zhou, T. Kanbara, M. Shimura, K. Kizu, T. Maruyama, Y. Nakamura, T. Fukuda, B. L. Lee, N. Ooba, S. Tomaru, T. Kurihara, T. Kaino, K. Kubota and S. Sasaki, Journal of the American Chemical Society 1996, 118, 10389-10399.
[62] X. Zhang, M. Kohler and A. J. Matzger, Macromolecules 2004, 37, 6306-6315.
[63] F. C. Tsai, C. C. Chang, C. L. Liu, W. C. Chen and S. A. Jenekhe, Macromolecules 2005, 38, 1958-1966.
[64] A. Kraft, A. C. Grimsdale and A. B. Holmes, Angewandte Chemie - International Edition 1998, 37, 402-428.
[65] S. Ko, R. Mondal, C. Risko, J. K. Lee, S. Hong, M. D. McGehee, J. L. Bredas and Z. Bao, Macromolecules 2010, 43, 6685-6698.

無法下載圖示 全文公開日期 2017/01/19 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE