簡易檢索 / 詳目顯示

研究生: 劉億謙
Yi-cian Liou
論文名稱: 二氧化碳雷射快速退火鋯鈦酸鉛鐵電厚膜於不鏽鋼基板之特性研究
Rapid annealing of PZT thin films on stainless steel substrates by CO2 laser
指導教授: 周振嘉
Chen-chia Chou
口試委員: 蔡顯榮
Hsien-lung Tsai
陳正劭
Cheng-sao chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 87
中文關鍵詞: 二氧化碳雷射鈣鈦礦結構鋯鈦酸鉛厚膜不鏽鋼基板微波快速退火溶膠-凝膠
外文關鍵詞: CO2 laser, perovskite, PZT thiick film, SUS430 substrate, microwave, rapid annealing, sol-gel
相關次數: 點閱:318下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用改良式溶膠-凝膠(sol-gel)法製備鋯鈦酸鉛(PZT)粉末,並使用低溫CO2雷射退火製程於SUS 430不鏽鋼基板上鍍製PZT鐵電厚膜。
首先,利用傳統爐管於550℃製備PZT粉末(平均粒徑大小194nm),再經以改良式sol-gel法旋鍍於SUS 430不銹鋼基材上,使得元件結構為PZT(5-15μm) /LSMO(0.2μm)/SUS 430;當PZT膜厚提升至15μm可大幅降低不鏽鋼基材對雷射能量反射的影響,而能有效地吸收CO2雷射能量,於較低溫度880℃燒結。元件呈現緻密而均勻的微觀結構,其殘留極化Pr值可達21.71μC/cm2。實驗中,經由雷射反射功率可推測出CO2雷射對於PZT厚膜的穿透深度約為36.5μm。
此外,利用微波加熱方式可於450℃低溫快速退火製備出具完整鈣鈦礦(perovskite)結晶相之PZT粉末,但隨著退火時間的增加,PZT粉末粒徑亦隨之變大;與一般傳統爐管所製備之PZT粉末比較,在相同退火溫度及時間下,微波加熱對於PZT粉末具有更快的晶體成長動力指數。


In this study, lead zirconate titanate (PZT) ferroelectric thick films prepared by a modified sol-gel method have been made by using CO2 laser low temperature annealing on SUS 430 substrate.
Firstly, the PZT powders are synthesized via conventional annealing process at 550℃, which possess an average particle size of about 194 nm, and then the PZT precursor and slurry are mixed and spin-coated on SUS 430 substrate by the modified sol-gel method. The subsequent sandwich structure is PZT(5-15μm)/LSMO/SUS 430. As the thickness of the PZT layer increasing to 15μm, the reflection of CO2 laser resulted from the SUS 430 substrate can be reduced so that the CO2 laser energy can not only be absorbed effectively by the PZT films but also can promote markedly the sintering ability of the PZT films at a low temperature of 880℃.
SEM observations show that the microstructures of the PZT thick films are dense and uniform. The Pr value is improved to 21.71μC/cm2 due to the good crystallinity of the PZT material. In addition, it is estimated that the penetration depth of PZT thick film is about 36.5μm for CO2 laser by measuring a reflection power from the specimens.
Moreover, single-phase perovskite PZT powders can be obtained by microwave rapid heat treatment at 450℃. Their average particle size is increased quickly with the annealing interval. Compare with the conventional annealing process, it is more efficient on kinetic index of grain growth for the PZT material by microwave annealing in the same temperature and annealing period.

摘要 I Abstract II 目錄 IV 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究目的 3 第二章 文獻回顧 4 2.1 鐵電材料 4 2.1.1 鐵電材料定義 4 2.1.2 鈣鈦礦結構 5 2.1.3 鋯鈦酸鉛鐵電材料 6 2.2鋯鈦酸鉛粉末製備 8 2.3 鋯鈦酸鉛厚膜 10 2.4 不鏽鋼基板 12 2.4.1 鋯鈦酸鉛披覆於不鏽鋼基板 12 2.5 雷射退火 16 2.5.1 連續波長雷射退火 16 2.5.2 雷射退火晶粒成長機制 17 2.5.3 雷射製程參數對薄膜的影響 18 2.5.4 CO2雷射退火於鋯鈦酸鉛之應用 22 第三章 實驗方法 24 3.1 實驗流程 24 3.2 錳酸鍶鑭2吋靶材製備 25 3.3 錳酸鍶鑭磁控式濺鍍薄膜 27 3.4 sol-gel法製備PZT前置溶液 28 3.5 Sol-gel法製備PZT粉末 28 3.5.1 爐管製備PZT粉末 28 3.5.2 微波製備PZT粉末 30 3.6 PZT厚膜試片製備 31 3.6.1 薄膜、厚膜旋鍍 31 3.6.2 化學機械研磨(Chemical mechanical Polishing,CMP) 33 3.6.3 掀去法(lift-off)製作氧化物及金屬上電極 33 3.7 CO2低溫雷射退火 34 3.8 特性量測 36 3.8.2 X-ray 繞射分析儀 36 3.8.3 掃描式電子顯微鏡 36 3.8.4 極化值與電場(P-E)量測 36 3.9 實驗藥品規格與儀器總表 37 第四章 結果與討論 39 4.1 LSMO鍍製SUS 430基材之最佳參數 39 4.1.1 錳酸鍶鑭靶材X-ray繞射分析 39 4.1.2 薄膜濺鍍參數 40 4.1.3 LSMO/SUS430於爐管退火分析 40 4.1.4 LSMO於雷射退火之分析 43 4.2 不同退火溫度下製備PZT粉末之分析 47 4.2.1 微波與爐管製備PZT粉末之X-ray繞射分析 47 4.3 雷射功率退火於PZT/ LSMO/SUS430之熱影響 56 4.3.1 雷射功率密度與時間處理於PZT之溫度關係分析 56 4.3.2 PZT厚膜於散熱墊片之熱分析 57 4.3.3雷射退火PZT厚膜於不同試片大小之熱分析 59 4.3.4 PZT膜厚與雷射吸收關係之熱分析 60 4.4.4 PZT(5μm)厚膜與雷射吸收關係之熱傳導分析 62 4.4 PZT厚膜於雷射退火時間與功率之特性影響 65 4.4.1 雷射退火PZT厚膜之X-ray繞射分析 65 4.4.2 雷射退火PZT厚膜之SEM微觀分析 66 4.4.3 雷射退火PZT厚膜之電性分析 69 4.5 雷射長時間退火於PZT(5μm)厚膜之分析 71 4.5.1 雷射長時間退火PZT(5μm)厚膜之X-ray繞射分析 71 4.5.2 雷射退火PZT(5μm)厚膜之SEM微觀分析 72 4.5.3 雷射退火PZT(5μm)厚膜之EDS分析 74 4.6 雷射長時間退火於PZT (15μm)厚膜之分析 76 4.6.1 雷射長時間退火PZT(15μm)厚膜之X-ray繞射分析 76 4.6.2 雷射退火PZT(15μm)厚膜之SEM微觀分析 77 4.6.3 雷射退火PZT(15μm)厚膜之電性分析 79 第五章 結論 81 參考文獻 83

1.劉柏亨, CO2雷射低溫熱處理鋯鈦酸鉛鐵電薄膜於不同基材之電性研究, in 機械工程系. 2006, 國立臺灣科技大學. p. 102.
2.蔡昇達, 二氧化碳雷射處理鋯鈦酸鉛鐵電厚膜於不同基材之電性研究, in 機械工程系. 2007, 國立臺灣科技大學. p. 86.
3.賴科亨, CO2雷射低溫熱處理鋯鈦酸鉛鐵電薄膜於不鏽鋼基板之電性研究, in 機械工程系. 2008, 國立臺灣科技大學. p. 100.
4.Yan, T., et al., Design and fabrication of thick-film PZT-metallic triple beam resonators. Sensors and Actuators A: Physical, 2004. 115(2-3): p. 401-407.
5.Lebedev, M. and J. Akedo, Effect of Thickness on the Piezoelectric Properties of Lead Zirconate Titanate Films Fabricated by Aerosol Deposition Method, in Japanese Journal of Applied Physics. 2002, The Japan Society of Applied Physics. p. 6669.
6.Bardaine, A., et al., Improvement of composite sol-gel process for manufacturing 40μm piezoelectric thick films. Journal of the European Ceramic Society, 2008. 28(8): p. 1649-1655.
7.H. Kueppers, et al., PZT thin films for piezoelectric microatuator application. Sensors and Acturators A, 2002: p. 680-684.
8.E. Defay, et al., PZT thin films integration for the realization of a high sensitivity pressure microsensor based on a vibrating membrane. Sensors and Actuators A, 2002: p. 3268.
9.D. Damjanovic and N.S. P.M., Ferroelectric device. IEEE Sensor jounral, 2001(1): p. 3.
10.B. Jaffe, W. R. Cook Jr, and H.J. London, Piezoelectric ceramics. Vol. 20. 1971, New York: : Academic Press. 317.
11.Humin Cheng, J.M., Bin Zhu, Yuhong Cui,, Reaction Mechanisms in the Formation of Lead Zirconate Titanate Solid Solutions under Hydrothermal Conditions. Journal of the American Ceramic Society, 1993. 76(3): p. 625-629.
12.Aiying Wu, P.M.V., Isabel M. Miranda Salvado, Jo緌 L. Baptista,, Sol-Gel Preparation of Lead Zirconate Titanate Powders and Ceramics: Effect of Alkoxide Stabilizers and Lead Precursors. Journal of the American Ceramic Society, 2000. 83(6): p. 1379-1385.
13.Xu, Z.J., et al., Preparation of PZT powders and ceramics via a hybrid method of sol-gel and ultrasonic atomization. Materials Science and Engineering B, 2005. 117(2): p. 113-118.
14.Sutton, W.H., Microwave processing of ceramic material. Journal of American Ceramic Society Bulletin, 1989. 68(2): p. 376-386.
15.Agrawal, D.K., Microwave processing of ceramics. Current Opinion in Solid State and Materials Science, 1998. 3(5): p. 480-485.
16.Seveno, R. and H. Gundel, Influence of the process parameters on the structural and electric properties of ferroelectric and antiferroelectric PZT thin films realized on stainless steel by a Sol–gel derived method. Journal of Sol-Gel Science and Technology, 2007. 44(1): p. 7-14.
17.Pan, H.-C., C.-C. Chou, and H.-L. Tsai, Low-temperature processing of sol-gel derived La0.5Sr0.5MnO3 buffer electrode and PbZr 0.52Ti0.48O3 films using CO2 laser annealing. Applied Physics Letters, 2003. 83(15): p. 3156-3158.
18.Cho, C.R., Heteroepitaxial growth and switching behaviors of PZT(53/47) films on LaNiO3-deposited LaAlO3 and SrTiO3 substrates. Materials Science and Engineering B, 1999. 64(2): p. 113-117.
19.Wang, Y.P., et al., C-V characteristics of Pt/PbZr0.53Ti0.47O3/LaAlO3/Si and Pt/PbZr0.53Ti0.47O3/La0.85Sr0.15CoO3/LaAlO3/Si structures for ferroelectric gate FET memory. Applied Surface Science, 2003. 205(1-4): p. 176-181.
20.Jiang, S.W., et al., Texture control of Pb(Zr, Ti)O3 thin films with different post-annealing processes. Applied Surface Science, 2006. 252(24): p. 8756-8759.
21.潘漢昌, 鐵電薄膜雷射低溫製程與電性提昇研究, in 機械工程系. 2003, 國立台灣科技大學. p. 136.
22.周嘉峰, 雷射低溫退火製備鈦鋯酸鉛薄膜之研究, in 機械工程系. 2001, 國立台灣科技大學. p. 117.
23.Franco Jona and G.S., Ferroeletric crystals. 1993: Dover Publication. 11-14.
24.Xu and Y.H., Ferroeletric materials and their appilaction. 1991, New York: North-Holland. 102.
25.Heber and A.L.M.A.I.M., Eleroceramics. C. 1990, New York, USA: Chapman and Hall.
26.Nomura and T.M.A.S., Ferroeletrics and related substance. 1981, New York: Spring-Verlag. 426.
27.Barrow, D.A., et al., Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process. Journal of Applied Physics, 1997. 81(2): p. 876-881.
28.Matthes, B., G. Tomandl, and G.t. Werner, Characterization of PZT thin films prepared by a modified sol-gel method. Journal of the European Ceramic Society, 1999. 19(6-7): p. 1387-1389.
29.Xia, D., et al., Fabrication and electrical properties of lead zirconate titanate thick films by the new sol-gel method. Materials Science and Engineering B, 2001. 87(2): p. 160-163.
30.Hu, S.H., et al., Preparation and characterization of multi-coating PZT thick films by sol-gel process. Journal of Crystal Growth, 2004. 264(1-3): p. 307-311.
31.Wang, Z., et al., Dense PZT thick films derived from sol-gel based nanocomposite process. Materials Science and Engineering B, 2003. 99(1-3): p. 56-62.
32.Dawei Wu, Q.Z., Koping Kirk. Shung, Srowthi N. Bharadwaja, Dongshe Zhang, Haixing Zheng,, Dielectric and Piezoelectric Properties of PZT Composite Thick Films with Variable Solution to Powder Ratios. Journal of the American Ceramic Society, 2009. 92(6): p. 1276-1279.
33.Chowdhury, A., et al., Densification and enhanced polarisation in lead zirconate titanate sol-gel thin films. Materials Chemistry and Physics, 2009. 113(1): p. 135-139.
34.Zou, Q., et al., Dielectric properties of lead zirconate titanate thin films deposited on metal foils. Applied Physics Letters, 2000. 77(7): p. 1038-1040.
35.Zou, Q., H.E. Ruda, and B.G. Yacobi, Improved dielectric properties of lead zirconate titanate thin films deposited on metal foils with LaNiO3 buffer layers. Applied Physics Letters, 2001. 78(9): p. 1282-1284.
36.Cheng, J.-R., et al., Electrical properties of sol-gel-derived Pb(Zr0.52Ti0.48)O3 thin films on a PbTiO3-coated stainless steel substrate. Applied Physics Letters, 2002. 81(25): p. 4805-4807.
37.Stancu, V., et al., Comparison between PZT thin films deposited on stainless steel and on platinum/silicon substrate. Journal of Physics: Conference Series, 2008: p. 012012.
38.Suzuki, T., et al., Characterization of Pb(Zr,Ti)O3 thin films deposited on stainless steel substrates by RF-magnetron sputtering for MEMS applications. Sensors and Actuators A: Physical, 2006. 125(2): p. 382-386.
39.Bhaumik, G.K., A.K. Nath, and S. Basu, Laser annealing of zinc oxide thin film deposited by spray-CVD. Materials Science and Engineering B, 1998. 52(1): p. 25-31.
40.Bertolotti, M., Physical Processes in Laser-Materials Interactions. 1983, New York: Plenum Press.
41.Watanabe, H., et al., Crystallization Process of Polycrystalline Silicon by KrF Excimer Laser Annealing. Japanese Journal of Applied Physics, 1994. 33(Part 1, No. 8): p. 4491.
42.Kuriyama, H., et al., Enlargement of Poly-Si Film Grain Size by Excimer Laser Annealing and Its Application to High-Performance Poly-Si Thin Film Transistor. Japanese Journal of Applied Physics. 30(Part 1, No. 12B): p. 3700.
43.Kuriyama, H., et al., Comprehensive Study of Lateral Grain Growth in Poly-Si Films by Excimer Laser Annealing and Its Application to Thin Film Transistors. Japanese Journal of Applied Physics, 1994. 33(Part 1, No. 10): p. 5657.
44.Sugihara, S., Sintering of Piezoelectric Ceramics with CO2 Laser. Japanese Journal of Applied Physics, 1992. 31(Part 1, No. 9B): p. 3037.
45.涂文香, 二氧化碳雷射退火製備鋯鈦酸鉛鐵電厚膜特性研究, in 機械工程系. 2006, 國立臺灣科技大學. p. 105.
46.So Baba, J.A., Masahiro Tsukamoto, Nobuyuki Abe,, Effect of Carrier Gas Species on Ferroelectric Properties of PZT/Stainless-Steel Fabricated by CO2 Laser-Assisted Aerosol Deposition. Journal of the American Ceramic Society, 2006. 89(5): p. 1736-1738.
47.Baba, S., H. Tsuda, and J. Akedo, Thickness dependence of electrical properties of PZT films deposited on metal substrates by laser-assisted aerosol deposition. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 2008. 55(5): p. 1009-1016.
48.Zhu, H., et al., Fabrication of ultrasonic arrays with 7μm PZT thick films as ultrasonic emitter for object detection in air. Sensors and Actuators A: Physical, 2005. 123-124: p. 614-619.
49.葉劉育恩, 鋯鈦酸鉛厚膜應用二氧化碳雷射退火製程之研究, in 機械工程系. 2004, 國立台灣科技大學. p. 114.
50.Ghasemifard, M., et al., Microstructural and optical characterization of PZT nanopowder prepared at low temperature. Physica E: Low-dimensional Systems and Nanostructures, 2009. 41(3): p. 418-422.
51.Zoubeida Ounaies, V.K. Varadan, and V.V. Varadan, SOL-GEL AND MICROWAVE PROCESSING OF PZT MATERIALS FOR SENSOR AND ACTUATOR APPLICATIONS. SPIE, 2005. 414: p. 2189.

QR CODE