簡易檢索 / 詳目顯示

研究生: 陳冠霖
Guan-Lin Chen
論文名稱: 大氣常壓下異原子摻雜奈米碳管的技術
Controllable synthesis of heteroatom doped carbon nanotubes at atmospheric pressure
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 江志強
Jyh-Chiang Jiang
何國川
Kuo-Chuan Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 95
中文關鍵詞: 奈米碳管摻雜大氣常壓可控制的技術取代反應
外文關鍵詞: carbon nanotubes, doping, atmospheric pressure, controllable synthesis, substitution reaction
相關次數: 點閱:503下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來的文獻報告與研究成果指出,經過異原子摻雜後的奈米碳材有著優異的性質,不論是異原子摻雜奈米碳管或是異原子摻雜石墨烯,在各領域都有其應用性,好比說,能源儲存、電子元件、燃料電池、電化學感測器等領域。然而,如今的摻雜技術通常需要在複雜的真空系統下進行,這使的摻雜技術無法工業化量產。因此,在大氣常壓下異原子摻雜奈米碳材的技術發展,不論對科學或是科技領域都有其相當的發展性與影響力。
本研究提出,在大氣常壓下利用溶液輔助的取代反應方法,成功合成硫摻雜奈米碳管與磷摻雜奈米碳管等材料,且改善了傳統取代反應方法的摻雜低濃度與摻雜不均勻的問題。當中所使用的奈米碳管是利用化學氣相沉積法(CVD)所製備而成。將含有異原子的前驅物以及奈米碳管,在溶液的幫助之下藉由攪拌的方式充分混合均勻,將混合均勻的混合物置入管式高溫爐中,在大氣常壓下通入氬氣的同時,升溫至300-1000◦C鍛燒持溫4小時,之後即可得到摻雜了異原子的奈米碳管。從XPS(X-ray photoelectron spectroscopy)與Raman的結果中得知,可以藉由調控鍛燒溫度的方式達到控制異原子摻雜的濃度。從XPS的結果中,更可以得知異原子的確成功摻雜進入奈米碳管的sp2結構之中,而且透過使用溶液輔助的取代反應方法所合成的異原子摻雜奈米碳管,其異原子摻雜濃度比使用傳統取代反應方法的濃度還高。另一方面,經過摻雜之後的奈米碳管,也能夠從Raman 的ID/IG數值變大而得知,所提出的摻雜技術能夠控制碳管的缺陷濃度。為了測試摻雜過後碳管的導電性質,將異原子摻雜奈米碳管製備成導電紙後,再藉由四點探針的輔助量測之下,即可得知摻雜後的奈米碳管導電性質的表現。從結果上得知,經過異原子參雜後的奈米碳管,確實改善了其電性質方面的表現。應用溶液輔助的取代反應法所合成的異原子摻雜奈米碳管,也因為摻雜濃度比使用傳統的取代反應的摻雜濃度要高,更加改善了電性質的表現。綜合以上結果得知,藉由此技術可以改善奈米碳材在電子領域以及電化學相關領域的應用。而且關於此技術值得注意的是,藉由在大氣常壓下摻雜奈米碳管,製備條件中因為沒有使用複雜的真空系統,所以此技術是可以用於工業化量產的。


Recent theoretical and experimental studies have suggested that heteroatom doped carbon nanomaterials such as carbon nanotubes (CNTs) and graphenes as novel materials with exceptional properties for applications including nanoelectronics, energy storage, fuel cells, and electrochemical sensing. However, current synthesis methods of heteroatom doped carbon nanomaterials usually involve complicated vacuum systems, making it difficult to enable industrial-scale production. Consequently, the development of a controllable synthesis of heteroatom doped carbon nanomaterials at atmospheric pressure will lead to important advances on both scientific studies and innovation applications.
In this study, sulfur doped carbon nanotubes and phosphorus doped carbon nanotubes are both synthesized by a solution-assisted substitution reaction method at atmospheric pressure, whereas solution-assisted substitution reaction method improves the convention substitution reaction method for low heteroatom doping concentration and non-uniform doping distribution. Pristine multiple wall carbon nanotubes (MWCNTs) synthesized using a water-assisted chemical vapor deposition (CVD) are used as starting materials. The heteroatom doped carbon nanotubes are produced by heating the mixture of heteroatom precursor and multiple wall carbon nanotubes under argon atmosphere from 300 to 1000◦C for four hours at atmospheric pressure. Experimental results indicate that the heteroatom concentrations in the carbon nanotubes could be tuned by controlling the reaction temperature, confirmed by the X-ray photoelectron spectroscopy (XPS) and Raman characterizations. Detailed XPS characterization indicates that the heteroatoms are successfully doped into the sp2 carbon lattice, whereas the heteroatom doping concentration of as-produced heteroatom doped carbon nanotubes employed solution-assisted substitution reaction method is higher than heteroatom doped carbon nanotubes employed conventional substitution reaction method. The systematic Raman characterization is performed and shown the ratio of the D- and the G- bands (ID/IG) is increased for the as-produced samples, indicating the defect densities due to the doping process can be controlled in our method. Thin-film electrical conductance characterization measuring by four-point probe method suggests the electrical conductance of the as-prepared heteroatom doped carbon nanotubes are significantly improved by heteroatom doping, making them useful materials for electronics and electrochemical-base applications. It is also noteworthy from a practical point of view that the developed atmospheric pressure synthesis method is amenable to industrial-scale production since it avoids the need for a vacuum system.

摘要 3 Abstract 5 Table of Contents 7 List of Figures 9 List of Tables 12 Chapter 1 Introduction 13 1.1 Carbon nanomaterials 13 1.2 Method of carbon nanomaterial functionalization 20 1.3 Heteroatom doped carbon nanomaterials route 23 1.4 Motivation and approach 33 Chapter 2 Experimental Section 35 2.1 Chemicals 35 2.2 Instruments 36 2.3 Preparation conductive paper 42 Chapter 3 Sulfur doped carbon nanotubes (S-CNTs) 43 3.1 Synthesis 43 3.1.1 Sulfur precursor 43 3.1.2 Conventional method 44 3.1.3 Pretreatment method 45 3.2 Characterization 49 3.2.1 X-ray photoelectron spectroscopy (XPS) 50 3.2.2 Raman spectra 51 3.2.3 Electrical Conductance 53 3.2.4 SEM and STEM 57 Chapter 4 Phosphorus doped carbon nanotubes (P-CNTs) 62 4.1 Synthesis 62 4.1.1 Phosphorus precursor 62 4.1.2 Conventional method 62 4.1.3 Pretreatment method 64 4.2 Characterization 68 4.2.1 X-ray photoelectron spectroscopy (XPS) 69 4.2.2 Raman spectra 71 4.2.3 Electrical Conductance 73 4.2.4 SEM and TEM 77 Chapter 5 Conclusion 80 Reference 81

1. Maiti, U. N.; Lee, W. J.; Lee, J. M.; Oh, Y.; Kim, J. Y.; Kim, J. E.; Shim, J.; Han, T. H.; Kim, S. O., 25th anniversary article: Chemically modified/doped carbon nanotubes & graphene for optimized nanostructures & nanodevices. Advanced materials 2014, 26, 40-66.
2. Rao, C. N. R.; Gopalakrishnan, K.; Govindaraj, A., Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements. Nano Today 2014, 9, 324-343.
3. Prasek, J.; Drbohlavova, J.; Chomoucka, J.; Hubalek, J.; Jasek, O.; Adam, V.; Kizek, R., Methods for carbon nanotubes synthesis—review. Journal of Materials Chemistry 2011, 21, 15872.
4. Oberlin, A.; Endo, M.; Koyama, T., Filamentous growth of carbon through benzene decomposition. Journal of Crystal Growth 1976, 32, 335-349.
5. Iijima, S., Helical microtubules of graphitic carbon. Nature 1991, 354, 56-58.
6. Iijima, S.; Ichihashi, T., Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603-605.
7. Bethune, D. S.; Klang, C. H.; de Vries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R., Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993, 363, 605-607.
8. Allen, M. J.; Tung, V. C.; Kaner, R. B., Honeycomb Carbon: A Review of Graphene. Chemical Reviews 2010, 110, 132-145.
9. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666-669.
10. Nozaki, T.; Okazaki, K., Carbon Nanotube Synthesis in Atmospheric Pressure Glow Discharge: A Review. Plasma Processes and Polymers 2008, 5, 300-321.
11. Wei, S.; Kang, W. P.; Davidson, J. L.; Choi, B. K.; Huang, J. H., Vertically aligned carbon nanotube field emission devices fabricated by furnace thermal chemical vapor deposition at atmospheric pressure. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2006, 24, 1190.
12. Zajíčková, L.; Eliáš, M.; Jašek, O.; Kudrle, V.; Frgala, Z.; Matějková, J.; Buršík, J.; Kadlečíková, M., Atmospheric pressure microwave torch for synthesis of carbon nanotubes. Plasma Physics and Controlled Fusion 2005, 47, B655.
13. Unrau, C. J.; Axelbaum, R. L.; Lo, C. S., High-Yield Growth of Carbon Nanotubes on Composite Fe/Si/O Nanoparticle Catalysts: A Car−Parrinello Molecular Dynamics and Experimental Study. The Journal of Physical Chemistry C 2010, 114, 10430-10435.
14. Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E., Catalytic growth of single-walled manotubes by laser vaporization. Chemical Physics Letters 1995, 243, 49-54.
15. Smajda, R.; Andresen, J. C.; Duchamp, M.; Meunier, R.; Casimirius, S.; Hernádi, K.; Forró, L.; Magrez, A., Synthesis and mechanical properties of carbon nanotubes produced by the water assisted CVD process. physica status solidi (b) 2009, 246, 2457-2460.
16. Patole, S. P.; Alegaonkar, P. S.; Lee, H.-C.; Yoo, J.-B., Optimization of water assisted chemical vapor deposition parameters for super growth of carbon nanotubes. Carbon 2008, 46, 1987-1993.
17. Tempel, H.; Joshi, R.; Schneider, J. J., Ink jet printing of ferritin as method for selective catalyst patterning and growth of multiwalled carbon nanotubes. Materials Chemistry and Physics 2010, 121, 178-183.
18. Yu, B.; Liu, C.; Hou, P. X.; Tian, Y.; Li, S.; Liu, B.; Li, F.; Kauppinen, E. I.; Cheng, H. M., Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition. Journal of the American Chemical Society 2011, 133, 5232-5.
19. Zhang, G.; Mann, D.; Zhang, L.; Javey, A.; Li, Y.; Yenilmez, E.; Wang, Q.; McVittie, J. P.; Nishi, Y.; Gibbons, J.; Dai, H., Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. Proceedings of the National Academy of Sciences of the United States of America 2005, 102, 16141-5.
20. Byon, H. R.; Lim, H.; Song, H. J.; Choi, H. C., A synthesis of high purity single-walled carbon nanotubes from small diameters of cobalt nanoparticles by using oxygen-assisted chemical vapor deposition process. Bulletin-Korean Chemical Society 2007, 28, 2056.
21. Varshney, D.; Weiner, B. R.; Morell, G., Growth and field emission study of a monolithic carbon nanotube/diamond composite. Carbon 2010, 48, 3353-3358.
22. Huang, Z. P.; Xu, J. W.; Ren, Z. F.; Wang, J. H.; Siegal, M. P.; Provencio, P. N., Growth of highly oriented carbon nanotubes by plasma-enhanced hot filament chemical vapor deposition. Applied Physics Letters 1998, 73, 3845-3847.
23. Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Siegal, M. P.; Provencio, P. N., Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass. Science 1998, 282, 1105-1107.
24. Bower, C.; Zhou, O.; Zhu, W.; Werder, D. J.; Jin, S., Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Applied Physics Letters 2000, 77, 2767.
25. Choi, Y. C.; Shin, Y. M.; Lee, Y. H.; Lee, B. S.; Park, G.-S.; Choi, W. B.; Lee, N. S.; Kim, J. M., Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition. Applied Physics Letters 2000, 76, 2367.
26. Cui, H.; Zhou, O.; Stoner, B. R., Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition. Journal of Applied Physics 2000, 88, 6072.
27. Xu, Y.; Dervishi, E.; Biris, A. R.; Biris, A. S., Chirality-enriched semiconducting carbon nanotubes synthesized on high surface area MgO-supported catalyst. Materials Letters 2011, 65, 1878-1881.
28. Wang, J.; Zhu, M.; Outlaw, R. A.; Zhao, X.; Manos, D. M.; Holloway, B. C., Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon 2004, 42, 2867-2872.
29. Zhu, M.; Wang, J.; Outlaw, R. A.; Hou, K.; Manos, D. M.; Holloway, B. C., Synthesis of carbon nanosheets and carbon nanotubes by radio frequency plasma enhanced chemical vapor deposition. Diamond and Related Materials 2007, 16, 196-201.
30. Zhu, Y.; Lin, T.; Liu, Q.; Chen, Y.; Zhang, G.; Xiong, H.; Zhang, H., The effect of nickel content of composite catalysts synthesized by hydrothermal method on the preparation of carbon nanotubes. Materials Science and Engineering: B 2006, 127, 198-202.
31. Li, W. Z.; Wen, J. G.; Tu, Y.; Ren, Z. F., Effect of gas pressure on the growth and structure of carbon nanotubes by chemical vapor deposition. Applied Physics A Materials Science & Processing 2001, 73, 259-264.
32. Li, W. Z.; Wen, J. G.; Ren, Z. F., Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition. Applied Physics A: Materials Science & Processing 2002, 74, 397-402.
33. Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, B. H.; Zou, B. S.; Zhou, W. Y.; Zhao, R. A.; Wang, G., Large-Scale Synthesis of Aligned Carbon Nanotubes. Science 1996, 274, 1701-1703.
34. Maruyama, S.; Einarsson, E.; Murakami, Y.; Edamura, T., Growth process of vertically aligned single-walled carbon nanotubes. Chemical Physics Letters 2005, 403, 320-323.
35. Ohno, Y.; Kurokawa, Y.; Kishimoto, S.; Mizutani, T.; Shimada, T.; Ishida, M.; Okazaki, T.; Shinohara, H.; Murakami, Y.; Maruyama, S.; Sakai, A.; Hiraga, K., Synthesis of carbon nanotube peapods directly on Si substrates. Applied Physics Letters 2005, 86, 023109.
36. Pan, Z. W.; Xie, S. S.; Chang, B. H.; Wang, C. Y.; Lu, L.; Liu, W.; Zhou, W. Y.; Li, W. Z.; Qian, L. X., Very long carbon nanotubes. Nature 1998, 394, 631-632.
37. Whittaker, J. D.; Brink, M.; Husseini, G. A.; Linford, M. R.; Davis, R. C., Self-aligned mechanical attachment of carbon nanotubes to silicon dioxide structures by selective silicon dioxide chemical-vapor deposition. Applied Physics Letters 2003, 83, 5307.
38. Edwards, R. S.; Coleman, K. S., Graphene synthesis: relationship to applications. Nanoscale 2013, 5, 38-51.
39. Wang, J.; Manga, K. K.; Bao, Q.; Loh, K. P., High-yield synthesis of few-layer graphene flakes through electrochemical expansion of graphite in propylene carbonate electrolyte. Journal of the American Chemical Society 2011, 133, 8888-91.
40. Huang, H.; Xia, Y.; Tao, X.; Du, J.; Fang, J.; Gan, Y.; Zhang, W., Highly efficient electrolytic exfoliation of graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism. Journal of Materials Chemistry 2012, 22, 10452.
41. Vallés, C.; Drummond, C.; Saadaoui, H.; Furtado, C. A.; He, M.; Roubeau, O.; Ortolani, L.; Monthioux, M.; Pénicaud, A., Solutions of Negatively Charged Graphene Sheets and Ribbons. Journal of the American Chemical Society 2008, 130, 15802-15804.
42. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K.; Boland, J. J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, A. C.; Coleman, J. N., High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nano 2008, 3, 563-568.
43. Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H., Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science 2008, 319, 1229-1232.
44. Wei, T.; Fan, Z.; Luo, G.; Zheng, C.; Xie, D., A rapid and efficient method to prepare exfoliated graphite by microwave irradiation. Carbon 2009, 47, 337-339.
45. Malik, S.; Vijayaraghavan, A.; Erni, R.; Ariga, K.; Khalakhan, I.; Hill, J. P., High purity graphenes prepared by a chemical intercalation method. Nanoscale 2010, 2, 2139-43.
46. Gu, W.; Zhang, W.; Li, X.; Zhu, H.; Wei, J.; Li, Z.; Shu, Q.; Wang, C.; Wang, K.; Shen, W.; Kang, F.; Wu, D., Graphene sheets from worm-like exfoliated graphite. Journal of Materials Chemistry 2009, 19, 3367.
47. Aylsworth, J. W., Expanded graphite. Google Patents: 1916.
48. Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W.; Geim, A. K.; Novoselov, K. S., Graphene-Based Liquid Crystal Device. Nano Letters 2008, 8, 1704-1708.
49. Khan, U.; O'Neill, A.; Lotya, M.; De, S.; Coleman, J. N., High-concentration solvent exfoliation of graphene. Small 2010, 6, 864-71.
50. Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N., Liquid Phase Production of Graphene by Exfoliation of Graphite in Surfactant/Water Solutions. Journal of the American Chemical Society 2009, 131, 3611-3620.
51. Lotya, M.; King, P. J.; Khan, U.; De, S.; Coleman, J. N., High-Concentration, Surfactant-Stabilized Graphene Dispersions. ACS Nano 2010, 4, 3155-3162.
52. Brodie, B. C., On the Atomic Weight of Graphite. Philosophical Transactions of the Royal Society of London 1859, 149, 249-259.
53. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. Journal of the American Chemical Society 1958, 80, 1339-1339.
54. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chemical Society reviews 2010, 39, 228-40.
55. Subrahmanyam, K. S.; Panchakarla, L. S.; Govindaraj, A.; Rao, C. N. R., Simple Method of Preparing Graphene Flakes by an Arc-Discharge Method. The Journal of Physical Chemistry C 2009, 113, 4257-4259.
56. Chen, Y.; Zhao, H.; Sheng, L.; Yu, L.; An, K.; Xu, J.; Ando, Y.; Zhao, X., Mass-production of highly-crystalline few-layer graphene sheets by arc discharge in various H2–inert gas mixtures. Chemical Physics Letters 2012, 538, 72-76.
57. Shen, B.; Ding, J.; Yan, X.; Feng, W.; Li, J.; Xue, Q., Influence of different buffer gases on synthesis of few-layered graphene by arc discharge method. Applied Surface Science 2012, 258, 4523-4531.
58. Higginbotham, A. L.; Kosynkin, D. V.; Sinitskii, A.; Sun, Z.; Tour, J. M., Lower-Defect Graphene Oxide Nanoribbons from Multiwalled Carbon Nanotubes. ACS Nano 2010, 4, 2059-2069.
59. Kumar, P.; Panchakarla, L. S.; Rao, C. N., Laser-induced unzipping of carbon nanotubes to yield graphene nanoribbons. Nanoscale 2011, 3, 2127-9.
60. Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H., Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877-880.
61. Valentini, L., Formation of unzipped carbon nanotubes by CF4 plasma treatment. Diamond and Related Materials 2011, 20, 445-448.
62. Jiao, L.; Zhang, L.; Ding, L.; Liu, J.; Dai, H., Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes. Nano Research 2010, 3, 387-394.
63. Kang, Y.-R.; Li, Y.-L.; Deng, M.-Y., Precise unzipping of flattened carbon nanotubes to regular graphene nanoribbons by acid cutting along the folded edges. Journal of Materials Chemistry 2012, 22, 16283.
64. Sutter, P., Epitaxial graphene: How silicon leaves the scene. Nat Mater 2009, 8, 171-172.
65. Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Rohrl, J.; Rotenberg, E.; Schmid, A. K.; Waldmann, D.; Weber, H. B.; Seyller, T., Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 2009, 8, 203-207.
66. Virojanadara, C.; Syväjarvi, M.; Yakimova, R.; Johansson, L. I.; Zakharov, A. A.; Balasubramanian, T., Homogeneous large-area graphene layer growth on6H-SiC(0001). Physical Review B 2008, 78.
67. Tedesco, J. L.; VanMil, B. L.; Myers-Ward, R. L.; McCrate, J. M.; Kitt, S. A.; Campbell, P. M.; Jernigan, G. G.; Culbertson, J. C.; Eddy, C. R.; Gaskill, D. K., Hall effect mobility of epitaxial graphene grown on silicon carbide. Applied Physics Letters 2009, 95, 122102.
68. Dato, A.; Radmilovic, V.; Lee, Z.; Phillips, J.; Frenklach, M., Substrate-Free Gas-Phase Synthesis of Graphene Sheets. Nano Letters 2008, 8, 2012-2016.
69. Yasuda, S.; Yu, L.; Kim, J.; Murakoshi, K., Selective nitrogen doping in graphene for oxygen reduction reactions. Chem Commun (Camb) 2013, 49, 9627-9.
70. Gao, Y.; Hu, G.; Zhong, J.; Shi, Z.; Zhu, Y.; Su, D. S.; Wang, J.; Bao, X.; Ma, D., Nitrogen-doped sp2-hybridized carbon as a superior catalyst for selective oxidation. Angewandte Chemie 2013, 52, 2109-13.
71. Gao, H.; Liu, Z.; Song, L.; Guo, W.; Gao, W.; Ci, L.; Rao, A.; Quan, W.; Vajtai, R.; Ajayan, P. M., Synthesis of S-doped graphene by liquid precursor. Nanotechnology 2012, 23, 275605.
72. Cattelan, M.; Agnoli, S.; Favaro, M.; Garoli, D.; Romanato, F.; Meneghetti, M.; Barinov, A.; Dudin, P.; Granozzi, G., Microscopic View on a Chemical Vapor Deposition Route to Boron-Doped Graphene Nanostructures. Chemistry of Materials 2013, 25, 1490-1495.
73. Xue, Y.; Yu, D.; Dai, L.; Wang, R.; Li, D.; Roy, A.; Lu, F.; Chen, H.; Liu, Y.; Qu, J., Three-dimensional B,N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction. Physical chemistry chemical physics : PCCP 2013, 15, 12220-6.
74. Jeon, I.-Y.; Choi, H.-J.; Ju, M. J.; Choi, I. T.; Lim, K.; Ko, J.; Kim, H. K.; Kim, J. C.; Lee, J.-J.; Shin, D.; Jung, S.-M.; Seo, J.-M.; Kim, M.-J.; Park, N.; Dai, L.; Baek, J.-B., Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Sci. Rep. 2013, 3.
75. Jeon, I.-Y.; Choi, H.-J.; Choi, M.; Seo, J.-M.; Jung, S.-M.; Kim, M.-J.; Zhang, S.; Zhang, L.; Xia, Z.; Dai, L.; Park, N.; Baek, J.-B., Facile, scalable synthesis of edge-halogenated graphene nanoplatelets as efficient metal-free eletrocatalysts for oxygen reduction reaction. Sci. Rep. 2013, 3.
76. Jeon, I. Y.; Zhang, S.; Zhang, L.; Choi, H. J.; Seo, J. M.; Xia, Z.; Dai, L.; Baek, J. B., Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect. Advanced materials 2013, 25, 6138-45.
77. Lü, X.; Wu, J.; Lin, T.; Wan, D.; Huang, F.; Xie, X.; Jiang, M., Low-temperature rapid synthesis of high-quality pristine or boron-doped graphene via Wurtz-type reductive coupling reaction. Journal of Materials Chemistry 2011, 21, 10685.
78. Deng, D.; Pan, X.; Yu, L.; Cui, Y.; Jiang, Y.; Qi, J.; Li, W.-X.; Fu, Q.; Ma, X.; Xue, Q.; Sun, G.; Bao, X., Toward N-Doped Graphene via Solvothermal Synthesis. Chemistry of Materials 2011, 23, 1188-1193.
79. Geng, D.; Hu, Y.; Li, Y.; Li, R.; Sun, X., One-pot solvothermal synthesis of doped graphene with the designed nitrogen type used as a Pt support for fuel cells. Electrochemistry Communications 2012, 22, 65-68.
80. Wu, P.; Qian, Y.; Du, P.; Zhang, H.; Cai, C., Facile synthesis of nitrogen-doped graphene for measuring the releasing process of hydrogen peroxide from living cells. Journal of Materials Chemistry 2012, 22, 6402.
81. Jiang, B.; Tian, C.; Wang, L.; Sun, L.; Chen, C.; Nong, X.; Qiao, Y.; Fu, H., Highly concentrated, stable nitrogen-doped graphene for supercapacitors: Simultaneous doping and reduction. Applied Surface Science 2012, 258, 3438-3443.
82. Long, D.; Li, W.; Ling, L.; Miyawaki, J.; Mochida, I.; Yoon, S. H., Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide. Langmuir : the ACS journal of surfaces and colloids 2010, 26, 16096-102.
83. Wu, Z.-S.; Ren, W.; Xu, L.; Li, F.; Cheng, H.-M., Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries. ACS Nano 2011, 5, 5463-5471.
84. Cai, D.; Wang, S.; Lian, P.; Zhu, X.; Li, D.; Yang, W.; Wang, H., Superhigh capacity and rate capability of high-level nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Electrochimica Acta 2013, 90, 492-497.
85. Sheng, Z.-H.; Shao, L.; Chen, J.-J.; Bao, W.-J.; Wang, F.-B.; Xia, X.-H., Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis. ACS Nano 2011, 5, 4350-4358.
86. Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X. a.; Huang, S., Sulfur-Doped Graphene as an Efficient Metal-free Cathode Catalyst for Oxygen Reduction. ACS Nano 2012, 6, 205-211.
87. Zhang, C.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y., Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Advanced materials 2013, 25, 4932-7.
88. Jeong, H. M.; Lee, J. W.; Shin, W. H.; Choi, Y. J.; Shin, H. J.; Kang, J. K.; Choi, J. W., Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett 2011, 11, 2472-7.
89. Wang, Y.; Shao, Y.; Matson, D. W.; Li, J.; Lin, Y., Nitrogen-Doped Graphene and Its Application in Electrochemical Biosensing. ACS Nano 2010, 4, 1790-1798.
90. Singh, G.; Sutar, D. S.; Divakar Botcha, V.; Narayanam, P. K.; Talwar, S. S.; Srinivasa, R. S.; Major, S. S., Study of simultaneous reduction and nitrogen doping of graphene oxide Langmuir-Blodgett monolayer sheets by ammonia plasma treatment. Nanotechnology 2013, 24, 355704.
91. Li, N.; Wang, Z.; Zhao, K.; Shi, Z.; Gu, Z.; Xu, S., Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 2010, 48, 255-259.
92. Panchakarla, L. S.; Subrahmanyam, K. S.; Saha, S. K.; Govindaraj, A.; Krishnamurthy, H. R.; Waghmare, U. V.; Rao, C. N. R., Synthesis, Structure, and Properties of Boron- and Nitrogen-Doped Graphene. Advanced materials 2009, NA-NA.
93. Shen, B.; Chen, J.; Yan, X.; Xue, Q., Synthesis of fluorine-doped multi-layered graphene sheets by arc-discharge. RSC Advances 2012, 2, 6761.
94. Han, W.; Bando, Y.; Kurashima, K.; Sato, T., Boron-doped carbon nanotubes prepared through a substitution reaction. Chem. Phys. Lett. 1999, 299, 368-373.
95. Han, W.; Bando, Y.; Kurashima, K.; Sato, T., Synthesis of boron nitride nanotubes from carbon nanotubes by a substitution reaction. Applied Physics Letters 1998, 73, 3085.
96. Golberg, D.; Bando, Y.; HAN, W.; Kurashima, K.; Sato, T., Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction. Chem. Phys. Lett. 1999, 308, 337-342.
97. Golberg, D.; Bando, Y.; Bourgeois, L.; Kurashima, K.; Sato, T., Large-scale synthesis and HRTEM analysis of single-walled B- and N-doped carbon nanotube bundles. Carbon 2000, 38, 2017-2027.
98. Borowiak-Palen, E.; Pichler, T.; Fuentes, G. G.; Graff, A.; Kalenczuk, R. J.; Knupfer, M.; Fink, J., Efficient production of B-substituted single-wall carbon nanotubes. Chemical Physics Letters 2003, 378, 516-520.
99. Borowiak-Palen, E.; Pichler, T.; Graff, A.; Kalenczuk, R. J.; Knupfer, M.; Fink, J., Synthesis and electronic properties of B-doped single wall carbon nanotubes. Carbon 2004, 42, 1123-1126.
100. Yang, X.; Liu, L.; Wu, M.; Wang, W.; Bai, X.; Wang, E., Wet-chemistry-assisted nanotube-substitution reaction for high-efficiency and bulk-quantity synthesis of boron- and nitrogen-codoped single-walled carbon nanotubes. Journal of the American Chemical Society 2011, 133, 13216-9.
101. Sheng, Z.-H.; Gao, H.-L.; Bao, W.-J.; Wang, F.-B.; Xia, X.-H., Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J. Mater. Chem. 2012, 22, 390-395.
102. Niu, L.; Li, Z.; Hong, W.; Sun, J.; Wang, Z.; Ma, L.; Wang, J.; Yang, S., Pyrolytic synthesis of boron-doped graphene and its application as electrode material for supercapacitors. Electrochimica Acta 2013, 108, 666-673.
103. Xu, X.; Yuan, T.; Zhou, Y.; Li, Y.; Lu, J.; Tian, X.; Wang, D.; Wang, J., Facile synthesis of boron and nitrogen-doped graphene as efficient electrocatalyst for the oxygen reduction reaction in alkaline media. International Journal of Hydrogen Energy 2014, 39, 16043-16052.
104. Sahoo, M.; Sreena, K. P.; Vinayan, B. P.; Ramaprabhu, S., Green synthesis of boron doped graphene and its application as high performance anode material in Li ion battery. Materials Research Bulletin 2015, 61, 383-390.
105. Yang, S.; Zhi, L.; Tang, K.; Feng, X.; Maier, J.; Müllen, K., Efficient Synthesis of Heteroatom (N or S)-Doped Graphene Based on Ultrathin Graphene Oxide-Porous Silica Sheets for Oxygen Reduction Reactions. Advanced Functional Materials 2012, 22, 3634-3640.
106. Poh, H. L.; Šimek, P.; Sofer, Z.; Pumera, M., Sulfur-Doped Graphene via Thermal Exfoliation of Graphite Oxide in H2S, SO2, or CS2 Gas. ACS Nano 2013, 7, 5262-5272.
107. Seredych, M.; Idrobo, J.-C.; Bandosz, T. J., Effect of confined space reduction of graphite oxide followed by sulfur doping on oxygen reduction reaction in neutral electrolyte. Journal of Materials Chemistry A 2013, 1, 7059.
108. Yu, X.; Park, H. S., Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors. Carbon 2014, 77, 59-65.
109. Li, R.; Wei, Z.; Gou, X.; Xu, W., Phosphorus-doped graphene nanosheets as efficient metal-free oxygen reduction electrocatalysts. RSC Advances 2013, 3, 9978.
110. Wang, Z.; Li, P.; Chen, Y.; He, J.; Liu, J.; Zhang, W.; Li, Y., Phosphorus-doped reduced graphene oxide as an electrocatalyst counter electrode in dye-sensitized solar cells. Journal of Power Sources 2014, 263, 246-251.
111. Niu, F.; Tao, L.-M.; Deng, Y.-C.; Wang, Q.-H.; Song, W.-G., Phosphorus doped graphene nanosheets for room temperature NH3 sensing. New Journal of Chemistry 2014, 38, 2269.
112. Seredych, M.; Bandosz, T. J., Confined space reduced graphite oxide doped with sulfur as metal-free oxygen reduction catalyst. Carbon 2014, 66, 227-233.
113. Wang, Z.; Li, P.; Chen, Y.; He, J.; Zhang, W.; Schmidt, O. G.; Li, Y., Pure thiophene-sulfur doped reduced graphene oxide: synthesis, structure, and electrical properties. Nanoscale 2014, 6, 7281-7.
114. Kiciński, W.; Szala, M.; Bystrzejewski, M., Sulfur-doped porous carbons: Synthesis and applications. Carbon 2014, 68, 1-32.
115. Wang, X.; Wang, J.; Wang, D.; Dou, S.; Ma, Z.; Wu, J.; Tao, L.; Shen, A.; Ouyang, C.; Liu, Q.; Wang, S., One-pot synthesis of nitrogen and sulfur co-doped graphene as efficient metal-free electrocatalysts for the oxygen reduction reaction. Chemical Communications 2014, 50, 4839-4842.
116. Wang, J.; Ma, R.; Zhou, Z.; Liu, G.; Liu, Q., Magnesiothermic synthesis of sulfur-doped graphene as an efficient metal-free electrocatalyst for oxygen reduction. Scientific reports 2015, 5, 9304.
117. Qi, C.; Ma, X.; Ning, G.; Song, X.; Chen, B.; Lan, X.; Li, Y.; Zhang, X.; Gao, J., Aqueous slurry of S-doped carbon nanotubes as conductive additive for lithium ion batteries. Carbon 2015, 92, 245-253.
118. Wang, X.; Sun, G.; Routh, P.; Kim, D. H.; Huang, W.; Chen, P., Heteroatom-doped graphene materials: syntheses, properties and applications. Chemical Society reviews 2014, 43, 7067-98.

無法下載圖示 全文公開日期 2020/08/26 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE