簡易檢索 / 詳目顯示

研究生: 黃聖凱
Sheng-kai Huang
論文名稱: 實現以IEC 61850通訊為基礎之微電網保護系統
Implementation of Protection Systems in Microgrids Based on IEC 61850 Communication
指導教授: 辜志承
Jyh-Cherng Gu
口試委員: 蒲冠志
Guan-Chih Pu
楊明達
Ming-Ta Yang
郭明哲
Ming-Tse Kuo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 128
中文關鍵詞: 微電網故障診斷IEC 61850保護管理系統
外文關鍵詞: Microgrid, Fault Diagnosis, IEC 61850, Protection Management System
相關次數: 點閱:492下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現代電力系統隨著再生能源之發展與節能減碳之要求,將發展成既可操作於傳統的併網模式亦可運轉於微電網模式之架構。然此電網中可包含多種分散式電源,使得故障電流具備多向性。隨著電網運轉模式之不同,加上電網由分散式電源、負載及饋線所組成之拓樸結構具有多變之特性,將明顯衝擊傳統電網保護技術與策略。
本論文透過模糊理論,研究僅應用電流訊號特性於電網運轉於併網/微電網模式時相/接地短路故障之診斷,並結合IEC 61850通訊網路,建立電網保護管理系統(PMS)。PMS依據運轉模式及電網之拓樸結構,即時規劃過電流保護機制,本論文假設透過IEC 61850通訊網路各IED與PMS間可隨時互相傳遞系統結構及電驛最佳設定資訊,且IED與IED間亦可傳遞GOOSE訊息。最後以Matlab/Simulink建立模擬環境,驗證故障診斷準則與PMS之保護機制,透過模擬情境驗證可知,各IED皆可正確判斷故障電流方向並診斷故障,且對應之保護機制可快速且有效的將故障區域隔離。


Based upon the fast growing of renewable energy and the requirements of energy conservation and carbon reduction, modern power system not only can be operated in grid-connected mode but also will be capable of running in microgrid mode. Nowadays, several types of renewable resources have been widely introduced so that the fault current in the system may be in bi-directional. In addition, the topology of such a power system including renewable resources, distribution feeders, and customer loads may be changed anytime. It will obviously impact the traditional protection strategies.
This thesis applies Fuzzy Logic Algorithm (FLA) in currents signal characterization in order to identify the system phase/ground fault both in grid-connected and microgrid mode. Moreover, IEC 61850 communication network is introduced to implement a Protection Management System (PMS). The major function of PMS determines IED protection logic based on system configuration and operation mode. It is assumed that not only the system topology and relay setting information can freely be transmitted between IED and PMS, but also the GOOSE message can be broadcasted among IEDs. Finally, simulation system based on Matlab/Simulink environment is established in order to verify the fault diagnosis algorithms and PMS protection strategies. The simulation result shows that all of IEDs can exactly detect the direction of fault current and diagnose the fault. Furthermore, the proposed PMS protection strategies can effectively and quickly isolate the fault zone.

中文摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法與步驟 2 1.3 研究貢獻 3 1.4 論文架構 4 第二章 微電網系統架構 7 2.1 前言 7 2.2 微電網概念 7 2.3 微電網發展現況 8 2.4 微電網相關規範 10 2.4.1 美國標準 11 2.4.2 日本標準 13 2.4.3 台灣標準 15 2.5 分散式電源 17 2.5.1 柴油發電機 18 2.5.2 電池儲能站 18 2.5.3 太陽能 19 2.5.4 微渦輪發電機 20 2.6 電動車充電站 21 2.7 微電網保護協調之挑戰 22 2.8 本章小結 26 第三章 運用模糊理論於故障判斷 27 3.1 前言 27 3.2 模糊理論介紹 27 3.2.1 模糊集合 28 3.2.2 模糊歸屬函數 28 3.2.3 模糊推論 31 3.3 低阻抗接地故障 32 3.3.1 故障偵測 32 3.3.2 故障種類判別 33 3.3.3 故障方向判斷 37 3.4 高阻抗接地故障 45 3.4.1 高阻抗接地故障等效模型 46 3.4.2 小波轉換理論介紹 48 3.4.3 故障偵測 51 3.4.4 故障種類判別 54 3.5 本章小結 56 第四章 微電網保護管理系統與通訊標準 57 4.1 前言 57 4.2 IEC 61850通訊標準 57 4.2.1 IEC 61850通訊標準系統之定義 58 4.2.2 GOOSE機制 61 4.3 微電網管理系統(MMS) 64 4.4 微電網保護管理系統(PMS) 66 4.4.1 低阻抗故障保護機制 67 4.4.2 高阻抗故障保護機制 70 4.5 本章小結 71 第五章 電網保護模擬與分析 73 5.1 前言 73 5.2 模擬系統架構與參數 73 5.3 模擬情境分析 76 5.4 模擬結果與討論 77 5.4.1 模擬情境1 77 5.4.2 模擬情境2 85 5.4.3 模擬情境3 91 5.4.4 模擬情境4 99 5.4.5 模擬情境5 106 5.5 本章小結 111 第六章 結論與未來研究方向 113 6.1 結論 113 6.2 未來研究方向 115 參考文獻 117 附錄A 123 附錄B 125

[1] S. Rohjans, M. Uslar, R.Bleiker, J. Gonzalez, M. Specht, T. Suding, and T. Weidelt, “Survey of Smart Grid Standardization Studies and Recommendations,” in Proceeding of the 1st Smart Grid Communications IEEE International Conference , pp. 583-588, 4-6 October, 2010.
[2] M. Uslar, S. Rohjans, R. Bleiker, J. Gonzalez, M. Specht, T. Suding, and T. Weidelt, “Survey of Smart Grid Standardization Studies and Recommendations — Part 2,” in Proceeding of Innovative Smart Grid Technologies Conference Europe, pp. 1-6, 11-13 October, 2010.
[3] SMB Smart Gird Strategic Group (SG3) “IEC Smart Gird Standardization Roadmap,” Edition 1.0, June 2010.
[4] H. J. Laaksonen, “Protection Principles for Future Microgrids,” IEEE Transactions on Power Electronics, Vol. 25, No. 12, pp. 2910-2918, December 2010.
[5] A. A. Salam, A. Mohamed and M. A. Hannan, “Technical Challenges on Microgrids,” ARPN Journal of Engineering and Applied Sciences, Vol. 3, No. 6, December 2008.
[6] A. Prasai, Y. Du, A. Paquette, E. Buck, R. Harley, and D. Divan, “Protection of Meshed Microgrids with Communication Overlay,”Energy Conversion Congress and Exposition, IEEE, pp. 64-71, September 2010.
[7] R. Bi, M. Ding and T. T. Xu, ” Design of Common Communication Platform of Microgrid,” in Proceeding of Power Electronics for Distributed Generation Systems, 2nd IEEE International Symposium, pp. 735-738 June 2010.
[8] IEC 61850-1, Communication Networks and System in Substations Part 1:Introduction and Overview.
[9] IEC 61850-2, Communication Networks and System in Substations Part 2:Glossary.
[10] IEC 61850-3, Communication Networks and System in Substations Part 3:General Requirement.
[11] IEC 61850-4, Communication Networks and System in Substations Part 4:System and Management.
[12] IEC 61850-5, Communication Networks and System in Substations Part 5:Communication Requirements for Functions and Devices Models.
[13] IEC 61850-6, Communication Networks and System in Substations Part 6:Configuration Description Language for Communication in Electrical Substations Related to IED.
[14] IEC 61850-7-1, Communication Networks and System in Substations Part 7-1:Basic Communication Structure for Substation and Feeder Equipment Principles and Model.
[15] IEC 61850-7-2, Communication Networks and System in Substations Part 7-2:Basic Communication Structure for Substation and Feeder Equipment Abstract Communication Service Interface(ACSI).
[16] IEC 61850-7-3, Communication Networks and System in Substations Part 7-3:Basic Communication Structure for Substation and Feeder Equipment Common Data Classes.
[17] IEC 61850-7-4, Communication Networks and System in Substations Part 7-4:Basic Communication Structure for Substation and Feeder Equipment Compatible Logical Node Classes and Data Classes.
[18] IEC 61850-8-1, Communication Networks and System in Substations Part 8-1:Specific Communication Service Mapping(SCSM) to MMS(ISO/IEC 9506-1 and ISO/IED 9506-2) and to ISO/IEC 8802-3.
[19] IEC 61850-9-1, Communication Networks and System in Substations Part 9-1:Specific Communication Service Mapping(SCSM) Sampled Values over Serial Unidirectional Multidrop Point to Point Link.
[20] IEC 61850-9-1, Communication Networks and System in Substations Part 9-2:Specific Communication Service Mapping Sampled Values over ISO/IEC 8802-3.
[21] K. Schwarz, “Overview of IEC 60870-5-101/-103/-104, DNP 3, IEC 60870-6-TASE.2 with IEC 61850,” Schwarz Consulting Company, pp. 1-20, 02 February, 2002.
[22] R. E. Mackiewicz, “Overview of IEC 61850 and Benefits,” in Proceeding of 2005/2006 IEEE PES Transmission and Distribution Conference and Exhibition, pp. 376-383, May 2006.
[23] R. Lopez, A. Moore, and J. Gillerman, “A Model-Drive Approach to Smart Substation Automation and Integration for Commission Federal de Electricidad,” in Proceeding of 2010 IEEE/PES Transmission and Distribution Conference and Exhibition, pp. 1-8, April 2010.
[24] A. P. Apostolov, “Implementation of accelerated transmission line protection schemes in substations with IEC 61850,” in Proceeding of Transmission and Distribution Conference and Exposition, pp. 1-6, April 2008.
[25] H. K. Kim, S. H. Kang, S. R. Nam, and S. S. Oh, “Improved Operating Scheme Using an IEC 61850-based Distance Relay for Transformer Backup Protection,” in proceeding of 2009 PowerTech IEEE, pp. 1-6, Bucharest, October 2009.
[26] M. L. Reichard, D. Finney, and J. T.Garrity, “Windfarm System Protection Using Peer-to-Peer Communications,” Protective Relay Engineers, in Proceeding of 2007 60th Annual Conference, pp. 511-521, 27-29 March, 2007.
[27] A. P. Apostolov, “Modeling Systems with Distributed Generators in IEC 61850,” in Proceeding of Power Systems Conference, pp. 1-6, 10-13 March, 2009.
[28] R. H. Lasseter, “CERTS Microgrid,” in Proceeding of IEEE Conference on Power Engineering, pp. 1-5, 16-18 April, 2007.
[29] J. C. M. Vieira, W. Freitas, W. Xu, and A. Morelato, “Performance of Frequency Relays for Distributed Generation Protection,” IEEE Transactions on Power Electronics, pp. 1120-1127, July 2006.
[30] R. Lasseter, A. Akhil, C. Marnay Marnay, J. Stevens, J. Dagle, R. Guttromson, A. S. Meliopoulos, R. Yinger, and J. Eto, “White Paper on Integration of Distributed Energy Resources:The CERTS MicroGrid Concept,” LBNL-50829, Consortium for Electric Reliability Technology Solutions, U.S., April 2002.
[31] J. Lynch, “Update on Msd River Microgrid and Related Activities,” in Proceeding of CERTS Microgrid Symposium, June 2005.
[32] European SmartGrids Technology Platform, “Vision and Strategy for Europe’s Electricity Networks of the Future,” Office for Official Publications of the European Communities, Luxembourg, 2006.
[33] A. Rossello-Busquet and J. Soler, “Towards Efficient Energy Management: Defining HEMS and Smart Grid Objectives,” International Journal on Advances in Telecommunications, Vol. 4 No. 3 & 4, 2011.
[34] S. Morozumi, S. Kikuchi, Y. Chiba, J. Kishida, S. Uesaka and Y. Arashiro, “Distribution Technology Development and Demonstration Projects in Japan,” Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy, pp. 1-7, 20-24 July, 2008.
[35] S. Morishima and K. Iba, “NEDO and Microgrids,” New Energy and Industrial Technology, Milano, 27 June, 2012.
[36] 林法正,智慧電網與讀表主軸計畫,民國99年8月。
[37] V. S. K. M. Balijepalli, S. A. Khaparde, and C. V. Dobariya, “Deployment of MicroGrids in India,” Power and Energy Society General Meeting, IEEE, pp. 1-7, 25-29 July, 2010.
[38] IEEE Std. 1547.2, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, 2008.
[39] IEEE Std. 519, IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, 1992.
[40] 日本系統連繫技術要件檢討委員會報告書,電力系統連繫技術要件,2006年
[41] 日本電氣協會,分散式電源系統連繫技術指針,2004年
[42] 台灣電力公司,台灣電力公司再生能源發電系統併聯技術要點,民國98年12月。
[43] S. R. Guda, C. Wang, and M. H. Nehrir, ”A Simulink-Based Microturbine Model for Distributed Generation Studies,” in Proceedings of the 37th Annual North American, Power Symposium, pp. 269-274, 23-25 October, 2005.
[44] 李允中,王小璠,蘇木春,模糊理論及其應用,全華科技圖書股份有限公司,民國93年2月。
[45] S. L. Yu and J. C. Gu, “Removal of Decaying in Current and Voltage Signals Using a Modified Fourier Filter Algorithm,” IEEE Transaction on Power Delivery, pp. 372-379, August 2002.
[46] R. N. Mahanty and P. B. D. Gupta, ” A fuzzy logic based fault classification approach using current samples only,” Electric Power Systems Research, Elsevier, 9 June, 2006.
[47] A. Ukil, B. Deck, and V. H. Shah, “Smart Distribution Protection Using Current-Only Directional Overcurrent Relay,” in Proceedings of Innovative Smart Grid Technologies Conference Europe, IEEE PES, pp. 1-7, 11-13 October, 2010.
[48] A. Ukil, B. Deck, and V. H. Shah, “Current-Only Directional Overcurrent Relay” Sensors Journal, IEEE, pp. 1403-1403, June 2011.
[49] A. Ukil, B. Deck, and V. H. Shah, “Current-Only Directional Overcurrent Protection for Distribution Automation: Challenges and Solutions,” IEEE Transactions on Smart Grid, pp. 1687-1694, December 2012.
[50] B. M. Aucoin and R. H. Jones, “High impedance fault detection implementation issues,” IEEE Transaction on Power Delivery, pp. 139-148, January 1996.
[51] Y. Sheng and S. M. Rovnyak, “Decision Tree-Based Methodology for High Impedance Fault Detection,” IEEE Transactions on Power Delivery, pp. 533-536, April 2004.
[52] 胡昌華,基於Matlab 6.x 的系統分析與設計-小波分析,西安電子科技大學出版社,中國,2004。
[53] G. V. Torres and P. H. F. Ruiz, “High Impedance Fault Detection Using Discrete Wavelet Transform,” in Proceeding of Robotics and Automotive Mechanics Conference, IEEE, pp. 325-329, 15-18 November, 2011.
[54] L. P. Wu, C. Huang, Y. Qi, W. Zhao, and H. T. Jiang, “A new Adaptive Matrix Algorithm for Fault Location in Distribution Network with Distributed Generation,” in Proceeding of 2011 International Conference on Electrical and Control Engineering, pp. 499-504, 16-18 September, 2011.
[55] 朱啟瑞,應用IED GOOSE功能於微電網保護協調之研究,國立台灣科技大學碩士論文,民國101年7月。

無法下載圖示 全文公開日期 2018/07/10 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE