簡易檢索 / 詳目顯示

研究生: 李孟庭
Meng-Ting Lee
論文名稱: 從工業廢水中回收氟以形成類鈣鈦礦結構礦物
Recovery of Fluoride as Perovskite-like Minerals from Industrial Wastewater
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 趙亞乾
Yaqian Zhao
陳孝行
Shiao-Shing Chen
李奇旺
Chi-Wang Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 105
中文關鍵詞: 冰晶石鉀冰晶石類鈣鈦礦物沉澱回收廢水
外文關鍵詞: Cryolite, Elpasolite, Fluoride, Perovskite-like minerals, Precipitation, Recovery, Wastewater
相關次數: 點閱:266下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗研究目的主要為從含氟工業廢水中以形成類鈣鈦礦結構礦物之方式回收氟廢水(626.5 mg/L),並探討不同平衡pH值、Na/F、Al/F莫耳比及氫氧化鉀(KOH)與氫氧化鈉(NaOH)兩種pH添加劑對其氟回收之影響。實驗結果顯示,利用不同pH添加劑NaOH和KOH可分別得到冰晶石(Na3AlF6, cryolite)與鉀冰晶石(K2NaAlF6, elpasolite)之沉澱物。當Na/F、Al/F莫耳比分別為12/6、1/6條件下且利用NaOH作為pH添加劑,在平衡pH值範圍為5.5到7.2時,氟的去除效率高於94.5%,當平衡pH大於7.6後,其氟去除效率大幅下降至78.0%。此外,晶相分析結果顯示,沉澱物除了冰晶石同時也包含副產物NaAlF4•0.83H2O與AlF2OH•1.4H2O。然而,藉由元素分析可知此程序在平衡pH條件為3.4至7.2範圍中,其主要沉澱物含量為冰晶石,成分濃度百分比並無明顯地受副產物影響。如將Al/F莫耳比提升至2.5/6,氟去除效率無法因此有效提升。同時,利用PHREEQC模擬軟體預測產物之組成和分佈並與實驗結果相互比較。另一方面,利用KOH調整廢水pH值與Na/F、Al/F莫耳比分別為3/6、1/6且平衡pH值為4.2至5.7的條件下,氟去除效率可高於94.7%且其沉澱物為鉀冰晶石。在粒徑量測與濁度分析實驗中,靜置5分鐘後,冰晶石與鉀冰晶其溶液濁度分別小於10NTU與2 NTU,顯示此程序具有良好沉降與分離效果。


This study aims to investigate the recovery of fluoride (626.5 mg/L) from an industrial wastewater in forms of perovskite-like minerals. Effects of equilibrium pH (pHeq), molar ratio of Na to F (Na/F), molar ratio of Al to F (Al/F), and different pH reagents were examined. Fluoride was recovered as cryolite (Na3AlF6) and elpasolite (K2NaAlF6) when pH of wastewater adjusted by NaOH and KOH, respectively. Once NaOH was used as pH reagent, fluoride removal efficiency was higher than 94.5% at Na/F of 12/6, Al/F of 1/6 and pHeq range of 5.5 to 7.2, but it decreased to 78.0% as pHeq became higher than 7.6. Although characteristic peaks of NaAlF4•0.83H2O and AlF2OH•1.4H2O showed in crystal patterns, it is noted that the amount of byproducts was insignificant from wet chemical analysis. Therefore, Na3AlF6 was the main precipitate recovered from wastewater at pHeq range of 3.4 to 7.2. However, increasing Al/F from 1/6 to 2.5/6, did not enhance removal efficiency at pHeq 5.5. PHREEQC simulation is conducted to predict and compare precipitation and speciation of Na3AlF6 with experimental ones. On the other hand, similar fluoride removal efficiency (>94.7%) was obtained using KOH as pH reagent at Na/F of 3/6 and Al/F of 1/6 when pHeq ranged from 4.2 to 5.7. As Na/F reduced to 1/6, it was obtained the lower fluoride removal efficiency except for pHeq 5.5. Morphology of precipitates recovered from wastewater was significantly affected by Na/F, Al/F and pHeq. Size analysis and sedimentation test showed that both K2NaAlF6 and Na3AlF6 could be easily separated from water.

CHAPTER 1 INTRODUCTION 1.1 Background 1.2 Objectives and Scope 1.3 Layout CHAPTER 2 LITERATURE REVIEW 2.1 Fluoride: effects, regulations and sources 2.2 Treatment of fluoride-containing wastewater 2.3 Fluoride removal by crystallization 2.4 Characterization of perovskite-like minerals 2.4.1 Elpasolite (K2NaAlF6) 2.4.2 Cryolite (Na3AlF6) CHAPTER 3 EXPERIMENTAL APPRATUS AND PROCEDURES 3.1 Materials and reagents 3.2 Instruments 3.3 Experimental method 3.3.1 Characterization of industrial wastewater 3.3.2 Experimental framework and procedures 3.3.3 Sample analysis 3.3.3.1 Ion chromatography (IC) analysis 3.3.3.2 Inductively couple plasma-atomic emission spectrometry (ICP-AES) analysis 3.3.3.3 X-ray diffraction (XRD) analysis 3.3.3.4 Field-emission scanning electron microscope (FE-SEM) 3.3.3.5 Particle size distribution analysis 3.3.4 Thermodynamic modeling software (PHREEQC) CHAPTER 4 RESULTS AND DISCUSSION 4.1 Effect of pH reagents 4.1.1 Effect of Na/F using KOH as pH reagent 4.1.2 Effect of Na/F using NaOH as pH reagent 4.2 Fluoride removal and recovery as cryolite. 4.2.1 Effect of pHeq 4.2.2 Effect of Al/F 4.3 Particle size distribution of K+NaAlF6 and Na3AlF6. 4.3.1 K2NaAlF6 4.3.2 Na3AlF6 4.3.3 Summary CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS REFERENCE APPENDIX A APPENDIX B

Aldaco, R., Irabien, A. and Luis, P.“Fluidized Bed Reactor for Fluoride Removal,” Chem. Eng. J., Vol. 107, pp. 113-117 (2005).

Aldaco, R., Garea, A. and Irabien, A.“Calcium Fluoride Recovery from Fluoride Wastewater in a Fluidized Bed Reactor,”Water Res., Vol. 41, pp. 810-818 (2007).

Aldaco, R., Garea, A., Fernandez, I. and Irabien, A.“Resources Reduction in the Fluoride Industry: Fluoride Removal and Recovery in a Fluidized Bed Crystallizer,”Clean. Technol. Envir., Vol. 10, pp. 203-210 (2008).

Aoudj, S., Drouiche, N., Hecini, M., Ouslimane, T. and Palaouane, B.“Coagulation as a Post-Treament Method for the Defluoridation of Photovaltaic Cell Manufacturing Wastewater,”Procedia Eng., Vol.33, pp. 111-120 (2012).

Bhatnagar, A., Kumar, E. and Sillanpaa, M.“Fluoride Removal from Water by Adsorption- A Review,”Chem. Eng. J., Vol.171, pp. 811-840 (2011).

Chang, C.F., Chang, C.Y. and Hsu, T.L.“Removal of Fluoride from Aqueous Solution with the Superparamagnetic Zirconia Material,”Desalination, Vol.279, pp. 375-382 (2011).

Chemite, B.G. “Cryolite,” Berufsgenossenschaft der chemischen Industrie, Germany (2005).

Demmel, F., Seydel, T. and Jahn, S.“Sodium Diffusion in Cryolite at Elevated Temperatures Studied by Quasielastic Neutron Scattering,”Solid State Ionics, Vol.180, pp. 1257-1260 (2009).

Dolar, D., Krešimirć, T. and Vučić, B.“RO/NF Treatment of Wastewater from Fertilizer Factory- Removal of Fluoride and Phosphate,” Desalination, Vol.265, pp. 237-241 (2011).

Drouiche, N., Aoudj, S., Lounici, H., Drouiche, M., Ouslimane, T. and Ghaffour, N.“Fluoride Removal from Pretreated Photovolatic Wastewater by Electrocoagulation: An Investigation of the Effect of Operational Parameters,” Procedia Eng., Vol.33, pp. 385-391 (2012).

Ford, W.E. “Dana’s Manual of Mineralogy for the Student of Elementary Mineralogy, the Mining Engineer, the Geologist, the Collector, etc” John Wiley & Sons, New York (2013).

Guo, Q. and Tian, J.“Removal of Fluoride and Arsenate from Aqueous Solution by Hydrocalumite via Precipitation and Anion Exchange,” Chem. Eng. J., Vol.231, pp. 121-131 (2013).

Huang, C.J., Yang, B.M., Chen, K.S., Chang, C.C. and Kao, C.M.“Aplication of Membrance Technology on Semiconductor Wastewater Reclamation: A pilot-scale Study,” Desalination, Vol.278, pp. 203-210 (2011).

Huang, Y.G., Lai, Y.Q., Tian, Z.L., Li, J., Liu, Y.X. and Li, Q.Y.“Electrival Conductivity of (Na3AlF6-40% K3AlF6)-AlF3-Al2O3 Melts,” J. Cent. South Univ. Technol., Vol.15, pp. 819-823 (2008).

Jahn, S., Ollivier, J. and Demmel, F.“Fast Ionic in Cryolite Studied Quasielastic Neutron Scattering,” Solid State Ionics, Vol.179, pp. 1957-1961 (2008).

Jiang, K., Zhou, K., Yang, Y. and Du, H.“A Pilot-Scale of Cryolite Precipitation from High Fluoride-Containing Wastewater in a Reaction-Separation Integrated Reactor,” J. Environ. Sci., Vol.25, pp. 1331-1337 (2013).

Khandare, H.W.“Fluoride Contaminated Water and its Implications on Human Health- A Review,” Int. J. Chem. Tech. Res., Vol.5, pp. 502-511 (2013).

Kumar, M., Babu, M.N., Mankhand, T.R. and Pandey, B.D.“Precipitation of Sodium (Na2SiF6) and Cryolite (Na3AlF6) from HF/HCl Leach Liquors of Alumino-Silicates,” Hydrometallurgy, Vol.25, pp. 1331-1337 (2013).

Konig, R., Scholz, G., Bertram, R. and Kemnitz, E.“Crystalline Aluminium Hydroxy Fuorides- Suitable Reference Compounds for 19F Chemical Shift Trend Analysis of Related Amorphous Solids,” J. Fluorine Chem., Vol.129, pp. 598-606 (2008).

Lisbona, D.F., Somerfield, C. and Steel, K.M.“Treatment of Spent Pot-lining with Aluminum Anodizing Wastewaters: Selective Precipitation of Aluminum and Fluoride as an Aluminum Hydroxy fluoride Hydrate Product,” Ind. Eng. Chem. Res., Vol.51, pp. 12712-12722 (2012).

Mi, J.X., Luo, S.M., Sun, H.Y., Liu, X.X. and Wei, Z.B.“Syntheses and Characterization of Elpasolite-Type Ammonium Alkali Metal Hexafluorometallates (III),” J. Solid State Chem., Vol.181, pp. 1723-1730 (2008).

Paudyal, H., Pangeni, B., Inoue, K., Kawakita, H., Ohto, K., Ghimire, K. N. and Alam, S.“Preparation of Novel Alginate based Anion Exchanger from Ulva Japonica and its Application for the Removal of Trace Concentrations of Fuoride from Water,” Bioresource Technol., Vol.148, pp. 221-227 (2013).

Scholz, G., Brehme, S., Konig, R., Heidemann, D. and Kemnitz, E.“Crystalline Aluminum Hydroxide Fluorides AlFx(OH)3-x•H2O: Structural Insights from 1H and 2H Solid State NMR and Vibrational Spectroscopy,” J. Phys. Chem. C, Vol.114, pp. 10535-10543 (2010).

Scholz, G. and Korup, O.“High-Energy Ball Milling-A Possible Synthesis Route for Cryolite and Chiolite,” Solid State Sci., Vol.8, pp. 678-684 (2006).

Singh, K., Lataye, D.H., Wasewar, K.L. and Yoo, C.K.“Removal of Fluoride from Aqueous Solution: Status and Techniques,”Desalin. Water Treat., Vol.51, pp. 3233-3247 (2013).

Singh, V.S., Joshi, C.P., Muthal, P.L., Dhopte, S.M. and Moharil, S.V.“Wet Chemical Synthesis of Eu2+ Activated Fuoro-Elpasolite Phosphors,” J. Alloy. Compd., Vol.599, pp. 49-52 (2014).

Su, C., Wang, Y., Xie, X. and Li, J.“Aqueous Geochemistry of High-Fluoride Groundwater in Datong Basin, Northern China,” J. Geochem. Explor. C, Vol.135, pp. 79-92 (2013).

Umran, T.U., Koparal, A.S. and Ogutveren, U.J.“Fluoride Removal from Water and Wastewater with a Bach Cylindrical Electrode using Electrocoagulation,” Chem. Eng. J., Vol.223, pp. 110-115 (2013).

Wang, C., Huang, X., Chi, D., Long, Z. and Lin, X.“Synthesis of Cryolite by Fluoride Aluinum Complex Solution,” Chinese. J. Rare Mater., Vol.33, No.5, pp.737-741 (2009).

Wang, L., Wang, C, Yu, Y., Huang, X., Long, Z., Hou, Y. and Cui, D.“Recovery of fluorine from bastnasite as synthetic cryolite by-product,” J. Hazard. Mater., Vol.209-210, pp. 77-83 (2012).

Wang, B.Y., Chen, X.L., Zhu, J., Shen, J.M. and Han, Y.“Pilot-Scale Fuoride-Containing Wastewater Treatment by the Ballasted Focculation Process,” Water Sci. Technol., Vol.68.1, pp. 134-143 (2013).

Weber, M.J.“Handbook of Optical Materials,” CRC Press, New York (2003).

Won, C.H., Choi, J. and Chung, J.“Evaluation of Optimal Reuse System for Hydrofluoric Acid Wastewater,” J. Hazard, Mater., Vol.239-240, pp. 110-117 (2012).

Xiao, Y., Chen, T., Hu, Y., Wang, D., Han, Y., Lin, Y. and Wang, X.“Advanced Treatment of Semiconductor Wastewater by Combined MBR–RO Technology,” Desalination, Vol.336, pp. 168-178 (2014).

Zhai, L., Sun, Y. and He, C.“Research on Coagulation/Sedimentation Process for Simulation of Fluorine-Containing Wastewater Treatment,” Appl. Mech. Mater., Vol.361-363, pp. 755-759 (2013).

Zhang, Z., Tan, Y. and Zhong, M.“Defluorination of Wastewater by Calcium Chloride Modified Natural Zeolite,”Desalination, Vol.276, pp. 246-252 (2011).

Zhou, Q. and Kennedy, B. J.“High-Temperature Powder Synchrotron Diffraction Studies of Synthetic Cryolite Na3AlF6,” J. Solid State Chem., Vol.177, pp. 654-659 (2004).

無法下載圖示 全文公開日期 2019/07/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2019/07/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE