簡易檢索 / 詳目顯示

研究生: 謝淳安
Chun-An Hsieh
論文名稱: 孔洞精碳負載釕金屬與孔洞鎂鋁矽複合氧化物之合成與鑑定
Synthesis and Characterization of Carbon-Supported Ruthenium and Porous Mg-Al-Si Composite Oxides
指導教授: 鍾博文
Po-Wen Chung
林昇佃
Shawn D. Lin
口試委員: 趙奕姼
Ito Chao
許昭萍
Chao-Ping Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 134
中文關鍵詞: 模板中孔洞碳材非結構導向劑法共沉澱法矽酸鋁鎂
外文關鍵詞: template, mesoporous carbon, structure directing agent-free method, co-precipitation, magnesium aluminium silicate
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究致力於合成具有高分散性的釕金屬負載孔洞材料,根據基材的不同可分成兩個系列,分別使用中孔碳與金屬氧化物為基材以進行製備。第一系列,於孔洞精碳負載釕金屬中,利用奈米鑄造法以SBA-15為模板、瀝青類碳分子為碳源並置入釕金屬前驅物,使得合成後的釕金屬可能因其所含的電子組態,與瀝青類碳分子於高溫碳化時之π-π stacking所引導的特殊自組裝與相互作用以均勻分散於材料中,於此研究稱為S-MP-Ru系列。第二系列,以金屬氧化物為基材並引進釕金屬前驅物所形成之孔洞鎂鋁矽複合氧化物,以無結構導向劑合成法於特定pH值下共沉澱,再以450 °C進行氫氣還原形成r-Tal-Ru。
    本研究進一步使用氣體吸附/脫附儀(Gas adsorption/desorption isotherm)進行測量以探討負載釕金屬之材料的孔洞結構,S-MP-Ru系列呈現第IV(b)型等溫吸脫附曲線,表示材料屬於中孔洞,r-Tal-Ru系列具有第IV(a)型等溫吸脫附曲線、H2(a)型遲滯曲線,表示其孔洞可能為墨水瓶狀或為管徑分布較不均一的中孔洞。亦經二氧化碳吸脫附分析顯示材料具有二氧化碳吸附能力,且二氧化碳吸附數據經擬合後Freundlich model的R2值較Langmuir model高,表示二氧化碳吸附於異質性表面且可能為非理想的過程。最後,將釕金屬負載孔洞材料使用穿透式電子顯微鏡(Transmission electron microscope, TEM)測量,經影像證實S-MP-Ru系列與r-Tal-Ru系列之釕金屬高度分散於材料中。本研究成功發展出高分散性的釕金屬負載孔洞材料,期望未來能應用於電化學與生質能轉換等領域,並同時促進綠能產業及永續發展。


    In this study, we reported the synthesis and characterization of highly dispersed ruthenium-containing mesoporous carbon and metal composite oxides. Carbon-supported ruthenium nanoparticles, denoted as S-MP-Ru, was prepared by nanocasting process using SBA-15 as template, and pitch-based carbon as carbon precursor. This pitch-based carbon underwent a self-assembly process at high carbonization temperature to give well-ordered mesoporous carbon with uniformly dispersed ruthenium nanoparticles in S-MP-Ru. We believe that the presence of high π electrons on the carbon support stabilize the ruthenium nanoparticles through dative bond formation. On the other hand, to extend the synthesis of the ruthenium based catalysts, we also developed mesoporous Mg-Al-Si supported ruthenium, denoted as r-Tal-Ru, without using any structure directing agent by a facile co-precipitation at tuned pH, followed by thermal reduction under H2 flow at 450 °C.
    To understand the pore nature and the distribution of ruthenium nanoparticles, we empolyed N2, Ar and CO2 sorption, and TEM measurement. The N2 sorption isotherm of S-MP-Ru could be classified into type IV(b), indicating the presence of mesopores. Whereas, the Ar sorption isotherm profile of r-Tal-Ru presented the type IV(a) isotherms comprising of a type H2(a) hysteresis loop, which revealed that material could possess the ink-bottle like mesoporous texture or non-uniform mesopores. The CO2 sorption isotherm showed that S-MP-Ru and r-Tal-Ru exhibited noticeable CO2 adsorption capacity and the isotherms were derived to fit simple adsorption models i,e. Freundlich and Langmuir. The results showed that the CO2 adsorption dynamics was better situated to the Freundlich model than Langmuir model. Hence, it inferred that a non-ideal CO2 adsorption occurred on surface with high heterogeneity. In addition, TEM micrographs presented that ruthenium nanoparticles were uniformly dispersed in S-MP-Ru and r-Tal-Ru. In conclusion, we have rationally designed the highly dispersed ruthenium-containing mesoporous materials, which might have a great potential for various catalytic applications such as CO2 hydrogenation and biomass valorization.

    摘要 I Abstract II 致謝 IV 表目錄 V 圖目錄 VI 目錄 1 第1章 緒論 3 1-1 前言 3 1-2 文獻回顧 4 1-2-1 界面活性劑 4 1-2-2 雙性三塊狀共聚高分子(Amphiphilic triblock copolymer) 7 1-2-3 二氧化矽之溶膠凝膠(sol-gel)原理 8 1-2-4 MCM-41的形成機制 11 1-2-5 SBA-15的形成機制 13 1-2-6 中孔洞碳材 15 1-2-7 中孔洞鎂鋁矽複合氧化物 18 1-3 研究動機 19 第2章 實驗儀器與方法 20 2-1 實驗藥品 20 2-2 實驗步驟 23 2-2-1 中孔洞二氧化矽合成 23 2-2-2 精碳負載釕金屬中孔材料合成 25 2-2-3 中孔洞鎂鋁矽複合氧化物合成 27 2-2-4 樣品命名 30 2-3 實驗儀器 32 2-3-1 X光粉末繞射儀 (Powder X-ray Diffractometer, PXRD) 32 2-3-2 氣體吸附/脫附儀(Gas adsorption/desorption isotherm) 34 2-3-3 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FESEM) 42 2-3-4 穿透式電子顯微鏡(Transmission electron microscope, TEM) 43 2-3-5 熱重量分析(Thermogravimetric Analyzer, TGA) 44 2-3-6 X光吸收光譜儀(X-ray Absorption Spectroscopy, XAS) 45 2-3-7 感應耦合電漿發射光譜儀(Inductively Coupled Plasma Optical Emission Spectrometer, ICP-OES) 47 2-3-8 固態核磁共振光譜儀(Solid-State NMR Spectrometer) 48 第3章 結果與討論 50 3-1 中孔洞二氧化矽系列之鑑定結果 50 3-1-1 SBA-15系列之鑑定 50 3-1-2 MCM-48系列之鑑定 53 3-2 中孔洞碳材系列之鑑定結果 56 3-2-1 以SBA-15系列為硬模板之中孔碳材鑑定 56 3-2-2 孔洞精碳負載釕金屬之材料鑑定 64 3-2-3 以MCM-48系列為硬模板之中孔碳材鑑定 73 3-3 鎂鋁矽複合氧化物之鑑定結果 78 3-3-1 鎂鋁矽複合氧化物(調控變因:矽源/水熱與否) 78 3-3-2 鎂鋁矽複合氧化物(使用TEOS為矽源,調控變因:將部分Al置換成Ru) 92 3-3-3 其他金屬複合氧化物(使用TEOS為矽源,調控變因:元素組成) 109 第4章 結論 114 第5章 參考文獻 115 附錄1-ACS報告 122 附錄2-ACS獎狀 123 附錄3-口試委員建議 124 附錄4-論文相似度比對 125

    1. Thommes, M.; Kaneko, K.; Neimark, A. V.; Olivier, J. P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. S. W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution. Pure Appl. Chem. 2015, 87 (9-10), 1051-1069.
    2. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates. J. Am. Chem. Soc. 1992, 114 (27), 10834-10843.
    3. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature 1992, 359 (6397), 710-712.
    4. Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular Self-Assembly and Nanochemistry: a Chemical Strategy for the Synthesis of Nanostructures. Science 1991, 254 (5036), 1312-1319.
    5. Lindman, B.; Wennerström, H. Miceles. Amphiphile Aggregation in Aqueous Solution. Top. Curr. Chem. 1980, 87, 1-87.
    6. Israelachvili, J. N.; Marcelja, S.; Horn, R. G. Physical Principles of Membrane Organization. Q. Rev. Biophys. 1980, 13 (2), 121-200.
    7. Mitchell, D. J.; Ninham, B. W. Micelles, Vesicles and Microemulsions. J. Chem. Soc., Faraday Trans. 1981, 77 (4), 601-629.
    8. Soler-Illia, G. J. d. A. A.; Sanchez, C.; Lebeau, B.; Patarin, J. Chemical Strategies To Design Textured Materials:  from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures. Chem. Rev. 2002, 102 (11), 4093-4138.
    9. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J. Am. Chem. Soc. 1998, 120 (24), 6024-6036.
    10. Wanka, G.; Hoffmann, H.; Ulbricht, W. Phase Diagrams and Aggregation Behavior of Poly(oxyethylene)-Poly(oxypropylene)-Poly(oxyethylene) Triblock Copolymers in Aqueous Solutions. Macromolecules 1994, 27 (15), 4145-4159.
    11. Bera, S.; Udayabhanu, G.; Narayan, R.; Rout, T. Sol-Gel Process for Anti-Corrosion. J. Res. Updates Polym. Sci. 2013, 2(4), 209-231.
    12. Hench, L. L.; West, J. K. The Sol-Gel Process. Chem. Rev. 1990, 90 (1), 33-72.
    13. Montheil, T.; Echalier, C.; Martinez, J.; Subra, G.; Mehdi, A. Inorganic Polymerization: an Attractive Route to Biocompatible Hybrid Hydrogels. J. Mater. Chem. B 2018, 6, 3434-3448.
    14. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica-Based Mesoporous Organic-Inorganic Hybrid Materials. Angew. Chem. Int. Ed. 2006, 45 (20), 3216-3251.
    15. Fuxiang, L.; Feng, Y.; Yongli, L.; Ruifeng, L.; Kechang, X. Direct Synthesis of Zr-SBA-15 Mesoporous Molecular Sieves with High Zirconium Loading: Characterization and Catalytic Performance after Sulfated. Microporous Mesoporous Mater. 2007, 101 (1-2), 250-255.
    16. Sayari, A. Catalysis by Crystalline Mesoporous Molecular Sieves. Chem. Mater. 1996, 8 (8), 1840-1852.
    17. Prasomsri, T.; Jiao, W.; Weng, S. Z.; Martinez, J. G. Mesostructured Zeolites: Bridging the Gap between Zeolites and MCM-41. Chem. Commun. 2015, 51 (43), 8900-8911.
    18. Firouzi, A.; Atef, F.; Oertli, A. G.; Stucky, G. D.; Chmelka, B. F. Alkaline Lyotropic Silicate-Surfactant Liquid Crystals. J. Am. Chem. Soc. 1997, 119 (15), 3596-3610.
    19. Toro, C.; Buriak, J. M. Father of Mesoporous Materials: Galen D. Stucky. ACS Appl. Mater. Interfaces 2014, 26 (20), 5819-5820.
    20. Chen, C. Y.; Xiao, S. Q.; Davis, M. E. Studies on Ordered Mesoporous Materials III. Comparison of MCM-41 to Mesoporous Materials Derived from Kanemite. Microporous Mater. 1995, 4 (1), 1-20.
    21. Monnier, A.; Schüth, F.; Huo, Q.; Kumar, D.; Margolese, D.; Maxwell, R. S.; Stucky, G. D.; Krishnamurty, M.; Petroff, P.; Firouzi, A.; Janicke, M.; Chmelka, B. F. Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures. Science 1993, 261 (5126), 1299-1303.
    22. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279 (5350), 548-552.
    23. Galarneau, A.; Cambon, H.; Di Renzo, F.; Ryoo, R.; Choi, M.; Fajula, F. Microporosity and Connections between Pores in SBA-15 Mesostructured Silicas as a Function of the Temperature of Synthesis. New J. Chem. 2003, 27 (1), 73-79.
    24. Soler-Illia, G. J. d. A. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C. Block Copolymer-Templated Mesoporous Oxides. Curr. Opin. Colloid Interface Sci. 2003, 8 (1), 109-126.
    25. Ogura, M.; Guillet-Nicolas, R.; Brouri, D.; Casale, S.; Blanchard, J.; Cychosz, K. A.; Thommes, M.; Thomas, C. Insights into the Accessibility of Zr in Zr/SBA-15 Mesoporous Silica Supports with Increasing Zr Loadings. Microporous Mesoporous Mater. 2016, 225, 440-449.
    26. Vinu, A.; Sawant, D. P.; Ariga, K.; Hossain, K. Z.; Halligudi, S. B.; Hartmann, M.; Nomura, M. Direct Synthesis of Well-Ordered and Unusually Reactive FeSBA-15 Mesoporous Molecular Sieves. Chem. Mater. 2005, 17 (21), 5339-5345.
    27. Zhang, H. B.; Song, K. S.; Wang, L.; Zhang, H. X.; Zhang, Y. H.; Tang, Y. Organic Structure Directing Agent-Free and Seed-Induced Synthesis of Enriched Intracrystal Mesoporous ZSM-5 Zeolite for Shape-Selective Reaction. ChemCatChem 2013, 5 (10), 2874-2878.
    28. Chiang, C. W.; Wang, A.; Wan, B. Z.; Mou, C. Y. High Catalytic Activity for CO Oxidation of Gold Nanoparticles Confined in Acidic Support Al-SBA-15 at Low Temperatures. J. Phys. Chem. B 2005, 109 (38), 18042-18047.
    29. Newalkar, B. L.; Olanrewaju, J.; Komarneni, S. Microwave-Hydrothermal Synthesis and Characterization of Zirconium Substituted SBA-15 Mesoporous Silica. J. Phys. Chem. B 2001, 105 (35), 8356-8360.
    30. Schüth, F.; Wingen, A.; Sauer, J. Oxide Loaded Ordered Mesoporous Oxides for Catalytic Applications. Microporous Mesoporous Mater. 2001, 44-45, 465-476.
    31. Stichert, W.; Schüth, F. Influence of Crystallite Size on the Properties of Zirconia. Chem. Mater. 1998, 10 (7), 2020-2026.
    32. Chen, S. Y.; Jang, L. Y.; Cheng, S. Synthesis of Zr-Incorporated SBA-15 Mesoporous Materials in a Self-generated Acidic Environment. Chem. Mater. 2004, 16 (21), 4174-4180.
    33. Ku, P. H.; Hsiao, C. Y.; Chen, M. J.; Lin, T. H.; Li, Y. T.; Liu, S. C.; Tang, K. T.; Yao, D. J.; Yang, C. M. Polymer/Ordered Mesoporous Carbon Nanocomposite Platelets as Superior Sensing Materials for Gas Detection with Surface Acoustic Wave Devices. Langmuir 2012, 28 (31), 11639-11645.
    34. Kim, T. W.; Chung, P. W.; Lin, V. S. Y. Facile Synthesis of Monodisperse Spherical MCM-48 Mesoporous Silica Nanoparticles with Controlled Particle Size. Chem. Mater. 2010, 22 (17), 5093-5104.
    35. Kim, T. W.; Chung, P. W.; Slowing, I. I.; Tsunoda, M.; Yeung, E. S.; Lin, V. S. Y. Structurally Ordered Mesoporous Carbon Nanoparticles as Transmembrane Delivery Vehicle in Human Cancer Cells. Nano Lett. 2008, 8 (11), 3724-3727.
    36. Jun, S.; Ryoo, R. Aluminum Impregnation into Mesoporous Silica Molecular Sieves for Catalytic Application to Friedel-Crafts Alkylation. J. Catal. 2000, 195 (2), 237-243.
    37. Hu, Z.; Srinivasan, M. P.; Ni, Y. Novel Activation Process for Preparing Highly Microporous and Mesoporous Activated Carbons. Carbon 2001, 39 (6), 877-886.
    38. Hu, Z.; Srinivasan, M.; Ni, Y. M. Preparation of Mesoporous High‐Surface‐Area Activated Carbon. Adv. Mater. 2000, 12(1), 62-65.
    39. Oya, A.; Yoshida, S.; Alcaniz-Monge, J.; Linares-Solano, A. Formation of Mesopores in Phenolic Resin-Derived Carbon Fiber by Catalytic Activation Using Cobalt. Carbon 1995, 33 (8), 1085-1090.
    40. Wang, X.; Lee, J. S.; Tsouris, C.; DePaoli, D. W.; Dai, S. Preparation of Activated Mesoporous Carbons for Electrosorption of Ions from Aqueous Solutions. J. Mater. Chem. 2010, 20 (22), 4602-4608.
    41. Tamon, H.; Ishizaka, H.; Yamamoto, T.; Suzuki, T. Preparation of Mesoporous Carbon by Freeze Drying. Carbon 1999, 37 (12), 2049-2055.
    42. Yeo, H.; Jung, J.; Song, H. J.; Choi, Y. M.; Wee, J. H.; You, N. H.; Joh, H. I.; Yang, C. M.; Goh, M. Preparation and Formation Mechanism of Porous Carbon Cryogel. Microporous Mesoporous Mater. 2017, 245, 138-146.
    43. Bhatia, G.; Raman, V.; Aggarwal, R. K.; Sengupta, P. R.; Mishra, A.; Saha, M. Development of Carbon Fibres from Pitches Modified with Polymers. J. Mater. Sci. 2004, 39 (4), 1297-1303.
    44. Niu, S. Z.; Wu, S. D.; Lu, W.; Yang, Q. H.; Kang, F. Y. A One-Step Hard-Templating Method for the Preparation of a Hierarchical Microporous-Mesoporous Carbon for Lithium-Sulfur Batteries. New Carbon Mater. 2017, 32 (4), 289-296.
    45. Zhu, K.; Egeblad, K.; Christensen, C. Mesoporous Carbon Prepared from Carbohydrate as Hard Template for Hierarchical Zeolites. Eur. J. Inorg. Chem. 2007, 2007 (25), 3955-3960.
    46. Knox, J. H.; Kaur, B.; Millward, G. R. Structure and Performance of Porous Graphitic Carbon in Liquid Chromatography. J. Chromatogr. A 1986, 352, 3-25.
    47. Lee, J.; Kim, J.; Hyeon, T. Recent Progress in the Synthesis of Porous Carbon Materials. Adv. Mater. 2006, 18 (16), 2073-2094.
    48. Ryoo, R.; Joo, S. H.; Jun, S. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. J. Phys. Chem. B 1999, 103 (37), 7743-7746.
    49. Joo, S. H.; Jun, S.; Ryoo, R. Synthesis of Ordered Mesoporous Carbon Molecular Sieves CMK-1. Microporous Mesoporous Mater. 2001, 44-45, 153-158.
    50. Kruk, M.; Jaroniec, M.; Ryoo, R.; Joo, S. H. Characterization of Ordered Mesoporous Carbons Synthesized Using MCM-48 Silicas as Templates. J. Mater. Chem. B 2000, 104 (33), 7960-7968.
    51. Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure. J. Am. Chem. Soc. 2000, 122 (43), 10712-10713.
    52. Darmstadt, H.; Roy, C.; Kaliaguine, S.; Kim, T. W.; Ryoo, R. Surface and Pore Structures of CMK-5 Ordered Mesoporous Carbons by Adsorption and Surface Spectroscopy. Chem. Mater. 2003, 15 (17), 3300-3307.
    53. Du, T. B.; Ju, L. P.; Chang, H. M. 石油系介相瀝青及其碳材料之應用介紹. https://www.materialsnet.com.tw/DocView.aspx?id=22666/(accessed 2021-03-03)
    54. Mochida, I.; Yoon, S. H.; Qiao, W. Catalysts in Syntheses of Carbon and Carbon Precursors. J. Braz. Chem. Soc. 2006, 17 (6), 1059-1073.
    55. Yang, H.; Yan; Liu, Y.; Zhang, F.; Zhang, R.; YanMeng, Y.; Li, M.; Xie, S.; Tu, B.; Zhao, D. A Simple Melt Impregnation Method to Synthesize Ordered Mesoporous Carbon and Carbon Nanofiber Bundles with Graphitized Structure from Pitches. J. Phys. Chem. B 2004, 108 (45), 17320-17328.
    56. Kim, T. W.; Park, I. S.; Ryoo, R. A Synthetic Route to Ordered Mesoporous Carbon Materials with Graphitic Pore Walls. Angew. Chem. Int. Ed. 2003, 42 (36), 4375-4379.
    57. Xiao, T.; Yabushita, M.; Nishitoba, T.; Osuga, R.; Yoshida, M.; Matsubara, M.; Maki, S.; Kanie, K.; Yokoi, T.; Cao, W.; Muramatsu, A. Organic Structure-Directing Agent-Free Synthesis of Mordenite-Type Zeolites Driven by Al-Rich Amorphous Aluminosilicates. ACS Omega 2021, 6 (8), 5176-5182.
    58. Baù, L.; Bártová, B.; Arduini, M.; Mancin, F. Surfactant-Free Synthesis of Mesoporous and Hollow Silica Nanoparticles with an Inorganic Template. Chem. Commun. 2009, (48), 7584-7586.
    59. Chung, P. W.; Wu, M. X. Metal Oxides-Silica Composite and Method for Preparing the Same. TW Patent I706914, May 3, 2020.
    60. Chung, P. W.; Wu, M. X. Understanding the Influence of Acid-base Properties on the Surface of Mg-Al-Si Derived Oxides for Ethanol Conversion. Master, National Chung Cheng University, Chiayi, TW, 2018.
    61. Koike, N.; Chaikittisilp, W.; Shimojima, A.; Okubo, T. Surfactant-Free Synthesis of Hollow Mesoporous Organosilica Nanoparticles with Controllable Particle Sizes and Diversified Organic Moieties. RSC Adv. 2016, 6, 90435-90445.
    62. Cychosz, K. A.; Guillet-Nicolas, R.; Garcia-Martinez, J.; Thommes, M. Recent Advances in the Textural Characterization of Hierarchically Structured Nanoporous Materials. Chem. Soc. Rev. 2017, 46 (2), 389-414.
    63. Xia, K.; Gao, Q.; Song, S.; Wu, C.; Jiang, J.; Hu, J.; Gao, L. CO2 Activation of Ordered Porous Carbon CMK-1 for Hydrogen Storage. Int. J. Hydrog. Energy 2008, 33 (1), 116-123.
    64. Lapham, D. D. Measuring the Isosteric Heat of Adsorption of CO2 on Micro-Porous Carbons. https://www.micromeritics.com/Repository/Files/AN184-notes.pdf/(accessed 2021-06-03).
    65. Yang, C. M. Physical Sorption Characterization of Nanoporous Materials. https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/146/01460320.pdf/(accessed accessed 2021-05-23).
    66. Isobe, T.; Watanabe, T.; d'Espinose de la Caillerie, J. B.; Legrand, A. P.; Massiot, D. Solid-State 1H and 27Al NMR Studies of Amorphous Aluminum Hydroxides. J. Colloid Interface Sci. 2003, 261 (2), 320-324.
    67. Kruk, M.; Jaroniec, M.; Kim, T. W.; Ryoo, R. Synthesis and Characterization of Hexagonally Ordered Carbon Nanopipes. Chem. Mater. 2003, 15 (14), 2815-2823.
    68. Jurkiewicz, K.; Pawlyta, M.; Burian, A. Structure of Carbon Materials Explored by Local Transmission Electron Microscopy and Global Powder Diffraction Probes. C 2018, 4 (4), 68.
    69. Yap, P. L.; Kabiri, S.; Tran, D. N. H.; Losic, D. Multifunctional Binding Chemistry on Modified Graphene Composite for Selective and Highly Efficient Adsorption of Mercury. ACS Appl. Mater. Interfaces 2019, 11 (6), 6350-6362.
    70. Moulijn, J. A.; van Diepen, A. E.; Kapteijn, F. Catalyst Deactivation: Is it Predictable?: What to Do? Appl. Catal. A 2001, 212 (1), 3-16.
    71. Zhu, X.; Tsang, D. C. W.; Wang, L.; Su, Z.; Hou, D.; Li, L.; Shang, J. Machine Learning Exploration of the Critical Factors for CO2 Adsorption Capacity on Porous Carbon Materials at Different Pressures. J. Clean. Prod. 2020, 273, 122915.
    72. Ammendola, P.; Raganati, F.; Chirone, R. CO2 Adsorption on a Fine Activated Carbon in a Sound Assisted Fluidized Bed: Thermodynamics and Kinetics. Chem. Eng. J. 2017, 322, 302-313.
    73. Adelodun, A. A.; Ngila, J. C.; Kim, D. G.; Jo, Y. M. Isotherm, Thermodynamic and Kinetic Studies of Selective CO2 Adsorption on Chemically Modified Carbon Surfaces. Aerosol Air Qual. Res. 2017, 16 (12), 3312-3329.
    74. Chowdhury, S.; Misra, R.; Das, P.; Kushwaha, P. Adsorption Thermodynamics, Kinetics and Isosteric Heat of Adsorption of Malachite Green onto Chemically Modified Rice Husk. Desalination 2011, 265, 159-168.
    75. Solovyov, L. A.; Zaikovskii, V. I.; Shmakov, A. N.; Belousov, O. V.; Ryoo, R. Framework Characterization of Mesostructured Carbon CMK-1 by X-ray Powder Diffraction and Electron Microscopy. J. Phys. Chem. B 2002, 106 (47), 12198-12202.
    76. Agliullin, M. R.; Danilova, I. G.; Faizullin, A. V.; Amarantov, S. V.; Bubennov, S. V.; Prosochkina, T. R.; Grigor’eva, N. G.; Paukshtis, E. A.; Kutepov, B. I. Sol-Gel Synthesis of Mesoporous Aluminosilicates with a Narrow Pore Size Distribution and Catalytic Activity Thereof in the Oligomerization of Dec-1-Ene. Microporous Mesoporous Mater. 2016, 230, 118-127.
    77. Cornu, D.; Lin, L.; Daou, M. M.; Jaber, M.; Kraft, J. M.; Herledan, V.; Laugel, G.; Millot, Y.; Lauron-Pernot, H. Influence of Acid-Base Properties of Mg-Based Catalysts on Transesterification: Role of Magnesium Silicate Hydrate Formation. Catal. Sci. Technol. 2017, 7, 1701-1712.
    78. Hernández-Barrios, C. A.; Cuao, C. A.; Jaimes, M. A.; Coy, A. E.; Viejo, F. Effect of the Catalyst Concentration, the Immersion Time and the Aging Time on the Morphology, Composition and Corrosion Performance of TEOS-GPTMS Sol-Gel Coatings Deposited on the AZ31 Magnesium Alloy. Surf. Coat. Technol. 2017, 325, 257-269.
    79. Thommes, M.; Köhn, R.; Fröba, M. Sorption and Pore Condensation Behavior of Pure Fluids in Mesoporous MCM-48 Silica, MCM-41 Silica, SBA-15 Silica and Controlled-Pore Glass at Temperatures above and below the Bulk Triple Point. Appl. Surf. Sci. 2002, 196 (1), 239-249.
    80. Storck, S.; Bretinger, H.; Maier, W. F. Characterization of Micro- and Mesoporous Solids by Physisorption Methods and Pore-Size Analysis. Appl. Catal. A 1998, 174 (1), 137-146.
    81. Zhang, Z.; Zhu, Q.; Sadakane, M.; Murayama, T.; Hiyoshi, N.; Yamamoto, A.; Hata, S.; Yoshida, H.; Ishikawa, S.; Hara, M.; Ueda, W. A Zeolitic Vanadotungstate Family with Structural Diversity and Ultrahigh Porosity for Catalysis. Nat. Commun. 2018, 9 (1), 3789.
    82. Shiva Kumar, S.; Himabindu, V. Hydrogen Production by PEM Water Electrolysis-a Review. Mater. Sci. Energy Technol. 2019, 2 (3), 442-454.

    無法下載圖示 全文公開日期 2024/09/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE