簡易檢索 / 詳目顯示

研究生: 王智勤
Aucky Sugianto
論文名稱: Bi-objective Optimization for Rebar Cutting Plan Using Symbiotic Organisms Search
Bi-objective Optimization for Rebar Cutting Plan Using Symbiotic Organisms Search
指導教授: 楊亦東
I-Tung Yang
口試委員: 謝孟勳
Ma-Chine Hsie
鄭明淵
Min-Yuan Cheng
楊亦東
I-Tung Yang
Doddy Prayogo
Doddy Prayogo
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 84
中文關鍵詞: Reinforced Steel BarsSymbiotic Organisms SearchParticle Swarm OptimizationCutting Stock ProblemMaterial WasteNumber of Cutting Patterns
外文關鍵詞: Reinforced Steel Bars, Symbiotic Organisms Search, Particle Swarm Optimization, Cutting Stock Problem, Material Waste, Number of Cutting Patterns
相關次數: 點閱:142下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • The construction industry is one of the biggest industries in the world. One of the most important materials in this industry is the reinforced steel bar. In construction site usually fabricated the reinforced steel bars into the form of one-dimensional stocks and designed according to the structural specification and installed in various structural components such as columns, beam, slab, and foundation. The purpose of cutting stock problems for reinforced steel bars (rebar cutting plan, RCP) is to satisfy the project requirements and also to minimize the cutting losses, which is the major contributor to the construction waste as there are two objective functions, we call the problem bi-objective rebar cutting plan (B-RCP). In the previous research, efforts developed the metaheuristics method to minimize the cutting losses in preliminary engineering designs but it few to consider about simplicity in order to achieve efficient work. Thus, this research applies the bi-optimization with epsilon constraint in order to find the trade-off solution between the material waste and number of cutting pattern for decision making. This study proposed the metaheuristic method Symbiotic Organisms Search (SOS) to solve B-RCP in one framework, to find the feasible cutting patterns along with the minimum total waste of the reinforced steel bar. To test the performance of the proposed SOS framework, the previous study case is set to be a benchmark, and then create a comparison with PSO. For real project instances of RCP are used to evaluate and validate the performance of SOS. The validation results from both cases of RCP show that SOS has better performance than PSO in both minimize the material waste along reducing the number of cutting patterns. Thus, it is validated that SOS is a competitive algorithm for solving the RCP.

    ABSTRACT i ACKNOWLEDGEMENT ii LIST OF FIGURES vi LIST OF TABLES vii LIST OF ABBREVIATIONS ix CHAPTER 1 : INTRODUCTION 1 1.1 Research Background 1 1.2 Research Objective 5 1.3 Outline 5 CHAPTER 2: LITERATURE REVIEW 6 2.1. Construction Material Waste Management 6 2.2. Rebar Management in Construction Industry 8 2.3. An Overview One-Dimensional Cutting Stock Problem 9 2.4. Simplicity in One-Dimensional Cutting Stock Problem 13 2.5. Meta-heuristic Methods to Solve the 1-D CSP. 15 2.5.1. Ant Colony Optimization (ACO) 15 2.5.2. Tabu Search (TS) 17 2.5.3. Genetic Algorithm (GA) 18 2.6. Summary 20 CHAPTER 3: METHODOLOGY 23 3.1. Problem Definition. 24 3.2. Symbiotic Organisms Search (SOS) 26 3.2.1 Mutualism Phase (SOS) 28 3.2.2 Commensalism Phase (SOS) 28 3.2.2. Parasitism Phase (SOS) 29 3.3. Multi-Objective Optimization Problems (MOOP) 30 3.3.1. ε -Constraint Method 32 3.4. Software for System Development 33 3.5. Cutting Rebar Simulation, Formulation, and Optimization 33 3.5.1. Generate all Possible Rebar Cutting 34 3.5.2. Minimize the Waste for Each Number of Cutting Patterns. 36 3.5.3. Bi-Objective Optimization: Material Waste vs Simplicity 37 CHAPTER 4: CASE STUDY 41 4.1. Background 41 4.2. Evaluation with Previous Benchmarks 42 4.2.1. Parameter Selection 42 4.2.2. Cutting Plan Results 44 4.2.2. Result Comparison 48 4.3. Further Analysis (Demand Rebar for D-16) 50 4.3.1. Parameter Selection 50 4.3.2. Cutting Pattern Results 51 4.3.4. Result Comparison 59 4.3.5. Pareto Trade-off Analysis 61 4.4. Summary 65 CHAPTER 5: CONCLUSIONS 66 5.1. Conclusions 66 5.2. Future Research Suggestion 67 APPENDIX 1 73

    Adjei, S. D. (2016). REVIEW OF WASTE MANAGEMENT IN THE UK CONSTRUCTION INDUSTRY. In.
    Altınpulluk, D. (2019). The cutting stock problem with diameter conversion inthe construction industry.
    <Artificial_Neural_Networks_incorporating_cost_sign.pdf>.
    Asvany, T., Amudhavel, J., Sujatha, P. J. A., & Sciences, A. i. M. (2017). ONE-DIMENSIONAL CUTTING STOCK PROBLEM WITH SINGLE AND MULTIPLE STOCK LENGTHS USING DPSO. 17(1), 147-163.
    Ayadi, O., Masmoudi, M., Ben Ameur, M., & Masmoudi, F. (2017). A New PSO-based Algorithm for Two-Dimensional Non-Guillotine Non-Oriented Cutting Stock Problem. Applied Artificial Intelligence, 31(4), 376-393. doi:10.1080/08839514.2017.1346966
    Bai, Q., Labi, S., & Sinha, K. C. (2012). Trade-Off Analysis for Multiobjective Optimization in Transportation Asset Management by Generating Pareto Frontiers Using Extreme Points Nondominated Sorting Genetic Algorithm II. 138(6), 798-808. doi:doi:10.1061/(ASCE)TE.1943-5436.0000369
    Benjaoran, V., Sooksil, N., & Metham, M. J. I. J. o. C. M. (2019). Effect of demand variations on steel bars cutting loss. 19(2), 137-148.
    Berberler, M. E., Nuriyev, U., & Yıldırım, A. (2011). A software for the one-dimensional cutting stock problem. Journal of King Saud University - Science, 23(1), 69-76. doi:https://doi.org/10.1016/j.jksus.2010.06.009
    Cerqueira, G. R. L., & Yanasse, H. H. J. J. o. C. I. S. (2009). A pattern reduction procedure in a one-dimensional cutting stock problem by grouping items according to their demands. 1(2), 159-164.
    Cheng, C., & Bao, L. (2018). An Improved Artificial Fish Swarm Algorithm to Solve the Cutting Stock Problem. Paper presented at the International Symposium on Neural Networks.
    Cheng, M.-Y., & Prayogo, D. (2014). Symbiotic Organisms Search: A new metaheuristic optimization algorithm. Computers & Structures, 139, 98-112. doi:https://doi.org/10.1016/j.compstruc.2014.03.007
    Cheng, M.-Y., Prayogo, D., & Wu, Y.-W. (2019). Prediction of permanent deformation in asphalt pavements using a novel symbiotic organisms search–least squares support vector regression. Neural Computing and Applications, 31. doi:10.1007/s00521-018-3426-0
    Chircop, K., & Zammit-Mangion, D. (2013). On Epsilon-Constraint Based Methods for the Generation of Pareto Frontiers. Journal of Mechanics Engineering and Automation, 3, 279-289.
    Debrah, P. (2011). Cutting stock problem based on the linear programming approach.
    Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), 28-39. doi:10.1109/MCI.2006.329691
    Eisemann, K. (1957). The Trim Problem. Management Science, 3(3), 279-284.
    Eshghi, K., Javanshir, H. J. I. J. o. I. E. T., Applications, & Practice. (2008). A revised version of ant colony algorithm for one-dimensional cutting stock problem. 15(4), 341-348.
    Ferronato, N., & Torretta, V. (2019). Waste Mismanagement in Developing Countries: A Review of Global Issues. International Journal of Environmental Research and Public Health, 16(6), 1060.
    Gilmore, P. C., & Gomory, R. E. (1961). A Linear Programming Approach to the Cutting-Stock Problem. Operations Research, 9(6), 849-859.
    Glover, F., & Laguna, M. (1998). Tabu Search. In D.-Z. Du & P. M. Pardalos (Eds.), Handbook of Combinatorial Optimization: Volume1–3 (pp. 2093-2229). Boston, MA: Springer US.
    Griffith, A., & Sidwell, A. C. (1995). Constructability in building and engineering projects: Macmillan International Higher Education.
    Gunantara, N. (2018). A review of multi-objective optimization: Methods and its applications. Cogent Engineering, 5(1), 1502242. doi:10.1080/23311916.2018.1502242
    Haessler, R. W., & Sweeney, P. E. (1991). Cutting stock problems and solution procedures. European Journal of Operational Research, 54(2), 141-150.
    Haimes, Y. (1971). On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Transactions on Systems, Man, and Cybernetics, 1(3), 296-297. doi:10.1109/TSMC.1971.4308298
    Holland, J. H. (1984). Genetic Algorithms and Adaptation. In O. G. Selfridge, E. L. Rissland, & M. A. Arbib (Eds.), Adaptive Control of Ill-Defined Systems (pp. 317-333). Boston, MA: Springer US.
    Jahromi, M. H. M. A., Tavakkoli-Moghaddam, R., Makui, A., & Shamsi, A. (2012). Solving an one-dimensional cutting stock problem by simulated annealing and tabu search. Journal of Industrial Engineering International, 8(1), 24. doi:10.1186/2251-712X-8-24
    Karelahti, J. J. D. o. E. P., & Technology, M. H. U. o. (2002). Solving the cutting stock problem in the steel industry. 2-5.
    Kennedy, J., & Eberhart, R. (1995, 27 Nov.-1 Dec. 1995). Particle swarm optimization. Paper presented at the Proceedings of ICNN'95 - International Conference on Neural Networks.
    Kolen, A. W., & Spieksma, F. C. J. J. o. t. O. R. S. (2000). Solving a bi-criterion cutting stock problem with open-ended demand: a case study. 51(11), 1238-1247.
    Li, S. (1996). Multi-job Cutting Stock Problem with Due Dates and Release Dates. Journal of the Operational Research Society, 47(4), 490-510. doi:10.1057/jors.1996.56
    Lu, Q., Wang, Z., & Chen, M. (2008, 18-20 Oct. 2008). An Ant Colony Optimization Algorithm for the One-Dimensional Cutting Stock Problem with Multiple Stock Lengths. Paper presented at the 2008 Fourth International Conference on Natural Computation.
    Meisel, W. S., & Michalopoulos, D. A. (1973). A Partitioning Algorithm with Application in Pattern Classification and the Optimization of Decision Trees. IEEE Transactions on Computers, C-22(1), 93-103. doi:10.1109/T-C.1973.223603
    Melhem, N., Maher, R., & Sundermeier, M. (2021). Waste-Based Management of Steel Reinforcement Cutting in Construction Projects. Journal of Construction Engineering and Management, 147, 04021056. doi:10.1061/(ASCE)CO.1943-7862.0002052
    Nikakhtar, A., Abbasian-Hosseini, A., Wong, K., & Zavichi, A. (2015). Application of lean construction principles to reduce construction process waste using computer simulation: A case study. International Journal of Services and Operations Management, 20, 461. doi:10.1504/IJSOM.2015.068528
    Ogunranti, G. A., & Oluleye, A. E. (2016). Minimizing waste (off-cuts) using cutting stock model: The case of one dimensional cutting stock problem in wood working industry. Journal of Industrial Engineering and Management, 9(3), 834-859.
    Pannanen, A., & Koskela, L. (2005). Necessary and unnecessary complexity in construction. Paper presented at the Proceedings of First International Conference on Built Environment Complexity.
    Park, W.-J., Kim, R., Roh, S., & Ban, H. (2020). Identifying the Major Construction Wastes in the Building Construction Phase Based on Life Cycle Assessments. Sustainability, 12(19), 8096.
    Pei, Y., Wang, W., & Zhang, S. (2012, 23-25 March 2012). Basic Ant Colony Optimization. Paper presented at the 2012 International Conference on Computer Science and Electronics Engineering.
    Pierce, J. F. (1964). Some large-scale production scheduling problems in the paper industry.
    Porwal, A., & Hewage, K. (2012). Building Information Modeling–Based Analysis to Minimize Waste Rate of Structural Reinforcement. Journal of Construction Engineering and Management, 138, 376. doi:10.1061/(ASCE)CO.1943-7862.0000508
    Prayogo, D., Harsono, K., Prasetyo, K. E., Wong, F. T., & Tjandra, D. (2019, 9-10 Oct. 2019). Size, Topology, and Shape Optimization of Truss Structures using Symbiotic Organisms Search. Paper presented at the 2019 International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA).
    Salem, O., Shahin, A., & Khalifa, Y. (2007). Minimizing Cutting Wastes of Reinforcement Steel Bars Using Genetic Algorithms and Integer Programming Models. Journal of Construction Engineering and Management, 133(12), 982-992. doi:10.1061/(ASCE)0733-9364(2007)133:12(982)
    Umetani, S., Yagiura, M., & Ibaraki, T. (2003). One-dimensional cutting stock problem to minimize the number of different patterns. European Journal of Operational Research, 146(2), 388-402. doi:https://doi.org/10.1016/S0377-2217(02)00239-4
    Wang, F., & Wang, S. (2010, 13-14 March 2010). Study on Steel Bar Management of Construction Project. Paper presented at the 2010 International Conference on Measuring Technology and Mechatronics Automation.
    Xu, Y., Yang, G., & Pan, C. (2013). A Heuristic Based on PSO for Irregular Cutting Stock Problem. IFAC Proceedings Volumes, 46(13), 473-477. doi:https://doi.org/10.3182/20130708-3-CN-2036.00094
    Yanasse, H. H., Limeira, M. S. J. C., & Research, O. (2006). A hybrid heuristic to reduce the number of different patterns in cutting stock problems. 33(9), 2744-2756.
    Yang, C.-T., Sung, T.-C., & Weng, W.-C. (2006). An improved tabu search approach with mixed objective function for one-dimensional cutting stock problems. Advances in Engineering Software, 37(8), 502-513. doi:https://doi.org/10.1016/j.advengsoft.2006.01.005
    Yu, P., & Yan, X. (2020). Stock price prediction based on deep neural networks. Neural Computing and Applications, 32. doi:10.1007/s00521-019-04212-x
    Yu, W., Li, B., Jia, H., Zhang, M., & Wang, D. (2015). Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design. Energy and Buildings, 88, 135-143. doi:https://doi.org/10.1016/j.enbuild.2014.11.063
    Yuen, B. J. J. E. J. o. O. R. (1991). Heuristics for sequencing cutting patterns. 55(2), 183-190.
    Zheng, C. (2018). Multi-Objective Optimization for Reinforcement Detailing Design and Work Planning on a Reinforced Concrete Slab Case.

    無法下載圖示 全文公開日期 2024/08/13 (校內網路)
    全文公開日期 2024/08/13 (校外網路)
    全文公開日期 2024/08/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE