簡易檢索 / 詳目顯示

研究生: 張智斌
Chih-Pin Chang
論文名稱: 啟發式演算法優化多重輸出機器學習技術預測臺灣營建股價
Metaheuristc-Optimized Multi-Output Machine Learning System for Forecasting Taiwan Construction Stock Price
指導教授: 周瑞生
Jui-Sheng Chou
口試委員: 陳柏翰
Po-Han Chen
曾惠斌
Hui-Ping Tserng
廖敏志
Min-Chih Liao
周瑞生
Jui-Sheng Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 164
中文關鍵詞: 滑動視窗多重輸出最小平方支援向量迴歸無特定參數啟發式優化演算法鑑識科學流程萬用啟發演算法教學相長優化演算法共生有機體搜索優化演算法臺灣營建股價預測浮動式定期定額投資策略混合模型專家系統獨立應用程式
外文關鍵詞: sliding window, multi-input multi-output least squares support vector regression, algorithmic-specific parameter-less algorithm, forensic-based investigation algorithm, teaching-learning-based optimization, symbiotic organisms search, Taiwan construction stock price forecasting, modified dollar-cost averaging strategy, hybrid system, expert system, standalone application
相關次數: 點閱:316下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有效預測股票市場價格與趨勢以提升投資報酬率為投資者與利害關係人關注之重點財務研究課題,為因應股市標的之高不穩定性與即將於臺灣股市發行之逐筆交易制度,本研究開發一結合單點預測、區間值預測與趨勢預測三者架構優勢之智能燭台圖預測系統,同時預測最高價、最低價、開盤價、收盤價資訊,包裝為視覺化專家系統與獨立應用程式,以燭台圖形式展示預測結果及漲跌趨勢,方便使用者單純直觀地運行系統與辨識預測結果。本研究分別嘗試三種無特定參數啟發式優化演算法針對多重輸出最小平方支援向量迴歸模型之超參數進行最佳化調校,建立一混合模型以增強系統於預測股市價量資訊之精確度與穩定性。經基準函數測試驗證及應用與過去學術研究相同之數據進行預測績效比較後,以一新穎之鑑識科學流程萬用啟發演算法表現最為優異。接續應用於臺灣股票市場領域,以元大寶來台灣卓越50證券投資信託基金(0050.TW)、元大寶來台灣高股息證券投資信託基金(0056.TW)兩檔臺灣主要指數型證券投資信託基金,與臺灣四大上市營建類公司興富發建設(2542.TW)、華固建設(2548.TW)、遠雄建設(5522.TW)及長虹建設(5534.TW)作為研究標的,統計下週五日預測之各別績效評估結果,展示預測系統之準確性與優勢。此外,本研究提出一浮動式定期定額投資策略,使報酬率最大化同時最小化投資風險,考量交易手續費與證券交易稅進行投資回測,與傳統定期定額策略以及買入持有策略進行投資報酬率比較,驗證本系統預測結果於實際股市操作之優異獲利能力。


    Forecasting the price and trend of stock market with accuracy and precision to gain higher return on investment has been a great issue for stakeholders in financial domain. To deal with the highly turbulent characteristic of stock price movement and the upcoming continuous trading system implementation in Taiwan Stock Exchange, this work proposes an Intelligent Candlestick Forecasting System (ICFS) by combining the advantages of single output, interval time series and trendline forecasting. ICFS provides users a simplified and intuitive method by utilizing a sliding-window metaheuristic-optimized multi-output least squares support vector regression hybrid model scheme, which is well packaged into an expert system and standalone application to forecast the 4 price information simultaneously with a candlestick chart visual display. This work takes three different algorithmic-specific parameter-less algorithm, namely TLBO, SOS, and FBI, into consideration to optimize the parameters of MLS-SVR, which is proved to be an essential procedure to enhance the accuracy, precision, and stability of the machine learning model. After benchmark function validation and performance comparison with previous research, a novel forensic-based investigation-algorithm-optimized MLS-SVR outperforms the others. Subsequently, this work compiled the FBI-MLSSVR hybrid model into a graphical user interface standalone application and applied to Taiwanese stock market using six targets, which are 0050.TW, 0056.TW, 2542.TW, 2548.TW, 5522.TW, and 5534.TW on a weekly forecast theme. Moreover, this work proposed a novel modified dollar-cost averaging investing strategy with IRR back analysis executed concerning transaction fee and stock trading tax to validate the promising real-time investing performance.

    摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1研究背景 1.2研究動機 1.3研究目的 1.4研究效益與貢獻 1.5研究流程與論文架構 第二章 文獻回顧 2.1機器學習技術於預測財務時間序列上之應用 2.2啟發式優化演算法於調校機器學習參數之應用 2.3預測時間序列之專家系統建構 第三章 研究方法 3.1多重輸出時間序列資料預處理 3.1.1滑動視窗時間序列分析 3.1.2相空間重組技術 3.2多重輸出最小平方支援向量迴歸法 3.3 無特定參數啟發式優化演算法 3.3.1教學相長優化演算法 3.3.2共生有機體搜索演算法 3.3.3鑑識科學流程萬用啟發式演算法 3.3.4迭代限止準則 3.4績效評估準則 3.4.1基準測試函數 3.4.2績效指標 3.4.3交叉驗證法 第四章 啟發式演算法優化多重輸出模型建構 4.1無特定參數啟發式優化演算法基準驗證 4.2無特定參數啟發式優化多重輸出預測模型建構 4.2.1預測模型流程架構 4.2.2數據預處理 4.2.3目標適應函數 4.3預測模型績效評估 第五章 智能燭台圖預測系統建構與應用 5.1視覺化使用者介面展示 5.2應用數據集截取 5.3系統運算與績效評估 5.3.1預測五日範疇之敏感度分析 5.3.2預測系統績效展示 第六章 浮動式定期定額策略 6.1模擬交易規則 6.2浮動式定期定額回測分析 第七章 結論與建議 參考文獻 附錄一、數據預處理程式碼 附錄二、MLS-SVR程式碼 附錄三、無特定參數啟發式優化演算法程式碼 附錄四、績效評估程式 附錄五、智能燭台圖預測系統程式碼 附錄六、智能燭台圖預測系統使用教程 附錄七、智能燭台圖預測系統建構教程

    [1] 中華民國財政部賦稅署, 房地合一課徵所得稅制度.
    [2] IASB, IFRS 15: Revenue from Contracts with Customers, International Accounting Standards Board.
    [3] S.M. Idrees, M.A. Alam, P. Agarwal, A Prediction Approach for Stock Market Volatility Based on Time Series Data, IEEE Access 7 (2019) 17287-17298.
    [4] M. Göçken, M. Özçalıcı, A. Boru, A.T. Dosdoğru, Integrating metaheuristics and Artificial Neural Networks for improved stock price prediction, Expert Systems with Applications 44 (2016) 320-331.
    [5] 臺灣證券交易所, 盤中全面逐筆交易專區.
    [6] J. Patel, S. Shah, P. Thakkar, K. Kotecha, Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques, Expert Systems with Applications 42 (1) (2015) 259-268.
    [7] K.-Y. Shen, G.-H. Tzeng, Combined soft computing model for value stock selection based on fundamental analysis, Applied Soft Computing 37 (2015) 142-155.
    [8] T.T. Chong, W.-K. Ng, K.V. Liew, Revisiting the Performance of MACD and RSI Oscillators, Journal of Risk and Financial Management 7 (1) (2014).
    [9] A. Kaushal, P. Chaudhary, News and events aware stock price forecasting technique, 2017 International Conference on Big Data, IoT and Data Science (BID), 2017, pp. 8-13.
    [10] X. Zhang, Y. Zhang, S. Wang, Y. Yao, B. Fang, P.S. Yu, Improving stock market prediction via heterogeneous information fusion, Knowledge-Based Systems 143 (2018) 236-247.
    [11] J. Brzeszczyński, B.M. Ibrahim, A stock market trading system based on foreign and domestic information, Expert Systems with Applications 118 (2019) 381-399.
    [12] G. Liu, X. Wang, A new metric for individual stock trend prediction, Engineering Applications of Artificial Intelligence 82 (2019) 1-12.
    [13] T. Preis, H.S. Moat, H.E. Stanley, Quantifying Trading Behavior in Financial Markets Using Google Trends, Scientific Reports 3 (2013) 1684.
    [14] H. Hu, L. Tang, S. Zhang, H. Wang, Predicting the direction of stock markets using optimized neural networks with Google Trends, Neurocomputing 285 (2018) 188-195.
    [15] E. Teti, M. Dallocchio, A. Aniasi, The relationship between twitter and stock prices. Evidence from the US technology industry, Technological Forecasting and Social Change 149 (2019) 119747.
    [16] D. Duxbury, S. Yao, Are investors consistent in their trading strategies? An examination of individual investor-level data, International Review of Financial Analysis 52 (2017) 77-87.
    [17] S. Lahmiri, Minute-ahead stock price forecasting based on singular spectrum analysis and support vector regression, Applied Mathematics and Computation 320 (2018) 444-451.
    [18] R. Ren, D.D. Wu, T. Liu, Forecasting Stock Market Movement Direction Using Sentiment Analysis and Support Vector Machine, IEEE Systems Journal 13 (1) (2019) 760-770.
    [19] J.-S. Chou, T.T.H. Truong, Sliding-window metaheuristic optimization-based forecast system for foreign exchange analysis, Soft Computing (2019).
    [20] F. Yang, Z. Chen, J. Li, L. Tang, A novel hybrid stock selection method with stock prediction, Applied Soft Computing (2019).
    [21] Y. Zhang, F. Ma, B. Zhu, Intraday momentum and stock return predictability: Evidence from China, Economic Modelling 76 (2019) 319-329.
    [22] A. Kazem, E. Sharifi, F.K. Hussain, M. Saberi, O.K. Hussain, Support vector regression with chaos-based firefly algorithm for stock market price forecasting, Applied Soft Computing 13 (2) (2013) 947-958.
    [23] J. Wang, R. Hou, C. Wang, L. Shen, Improved v -Support vector regression model based on variable selection and brain storm optimization for stock price forecasting, Applied Soft Computing 49 (2016) 164-178.
    [24] M. Timor, H. Dincer, Ş. Emir, Performance comparison of artificial neural network (ANN) and support vector machines (SVM) models for the stock selection problem: An application on the Istanbul Stock Exchange (ISE)-30 index in Turkey, African Journal of Business Management 6 (2012) 1191-1198.
    [25] U. Thissen, R. van Brakel, A.P. de Weijer, W.J. Melssen, L.M.C. Buydens, Using support vector machines for time series prediction, Chemometrics and Intelligent Laboratory Systems 69 (1) (2003) 35-49.
    [26] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, NY (1995).
    [27] K.-j. Kim, Financial time series forecasting using support vector machines, Neurocomputing 55 (1) (2003) 307-319.
    [28] S. R, A. Shabri, P. Saad, A Comparison of Time Series Forecasting using Support Vector Machine and Artificial Neural Network Model, Journal of Applied Sciences 10 (2010).
    [29] M. Okasha, Using Support Vector Machines in Financial Time Series Forecasting, International Journal of Statistics and Applications 4 (2014) 28-39.
    [30] J.A.K. Suykens, J.J.N.P.L. Vandewalle, Least Squares Support Vector Machine Classifiers, 9 (3) (1999) 293-300.
    [31] J. Chou, T. Nguyen, Forward Forecast of Stock Price Using Sliding-Window Metaheuristic-Optimized Machine-Learning Regression, IEEE Transactions on Industrial Informatics 14 (7) (2018) 3132-3142.
    [32] N.-D. Hoang, A.-D. Pham, M.-T. Cao, A Novel Time Series Prediction Approach Based on a Hybridization of Least Squares Support Vector Regression and Swarm Intelligence, Applied Computational Intelligence and Soft Computing 2014 (2014) 8.
    [33] L. Khaidem, S. Saha, S.R. Dey, Predicting the direction of stock market prices using random forest, Applied Mathematical Finance 23 (2) (2016).
    [34] S. Basak, S. Kar, S. Saha, L. Khaidem, S.R. Dey, Predicting the direction of stock market prices using tree-based classifiers, The North American Journal of Economics and Finance (2018).
    [35] P.-F. Pai, C.-S. Lin, A hybrid ARIMA and support vector machines model in stock price forecasting, Omega 33 (6) (2005) 497-505.
    [36] P. Singh, B. Borah, Forecasting stock index price based on M-factors fuzzy time series and particle swarm optimization, International Journal of Approximate Reasoning 55 (3) (2014) 812-833.
    [37] A.L.S. Maia, F.d.A.T. de Carvalho, T.B. Ludermir, Forecasting models for interval-valued time series, Neurocomputing 71 (16) (2008) 3344-3352.
    [38] T. Xiong, Y. Bao, Z. Hu, Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting, Knowledge-Based Systems 55 (2014) 87-100.
    [39] T. Xiong, Y. Bao, Z. Hu, Interval forecasting of electricity demand: A novel bivariate EMD-based support vector regression modeling framework, International Journal of Electrical Power & Energy Systems 63 (2014) 353-362.
    [40] D.C.A. Mallqui, R.A.S. Fernandes, Predicting the direction, maximum, minimum and closing prices of daily Bitcoin exchange rate using machine learning techniques, Applied Soft Computing 75 (2019) 596-606.
    [41] S. Xu, X. An, X. Qiao, L. Zhu, L. Li, Multi-output least-squares support vector regression machines, Pattern Recognition Letters 34 (9) (2013) 1078-1084.
    [42] Y. Guo, S. Han, C. Shen, Y. Li, X. Yin, Y. Bai, An Adaptive SVR for High-Frequency Stock Price Forecasting, IEEE Access 6 (2018) 11397-11404.
    [43] D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1 (1) (1997) 67-82.
    [44] X.-S. Yang, Nature-Inspired Optimization Algorithms, Elsevier, Oxford, 2014.
    [45] K.F. Man, K.S. Tang, S. Kwong, Genetic algorithms: concepts and applications [in engineering design], IEEE Transactions on Industrial Electronics 43 (5) (1996) 519-534.
    [46] J. Kennedy, R. Eberhart, Particle swarm optimization, Proceedings of ICNN'95 - International Conference on Neural Networks, Vol. 4, 1995, pp. 1942-1948 vol.1944.
    [47] D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimization, Technical Report - TR06, Technical Report, Erciyes University (2005).
    [48] X.-S. Yang, S. Deb, M. Loomes, M. Karamanoglu, A framework for self-tuning optimization algorithm, Neural Computing and Applications 23 (2013).
    [49] R.V. Rao, V.J. Savsani, D.P. Vakharia, Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems, Computer-Aided Design 43 (3) (2011) 303-315.
    [50] R.V. Rao, V.J. Savsani, D.P. Vakharia, Teaching–Learning-Based Optimization: An optimization method for continuous non-linear large scale problems, Information Sciences 183 (1) (2012) 1-15.
    [51] G. Li, P. Niu, W. Zhang, Y. Liu, Model NOx emissions by least squares support vector machine with tuning based on ameliorated teaching–learning-based optimization, Chemometrics and Intelligent Laboratory Systems 126 (2013) 11-20.
    [52] X. Ji, H. Ye, J. Zhou, Y. Yin, X. Shen, An improved teaching-learning-based optimization algorithm and its application to a combinatorial optimization problem in foundry industry, Applied Soft Computing 57 (2017) 504-516.
    [53] X. Chen, B. Xu, C. Mei, Y. Ding, K. Li, Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation, Applied Energy 212 (2018) 1578-1588.
    [54] S. Li, W. Gong, X. Yan, C. Hu, D. Bai, L. Wang, L. Gao, Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization, Energy Conversion and Management 186 (2019) 293-305.
    [55] B. Yilmaz, E. Aras, S. Nacar, M. Kankal, Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models, Science of The Total Environment 639 (2018) 826-840.
    [56] R.V. Rao, V. Patel, An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems, Scientia Iranica 20 (3) (2013) 710-720.
    [57] R. Venkata Rao, G.G. Waghmare, A comparative study of a teaching–learning-based optimization algorithm on multi-objective unconstrained and constrained functions, Journal of King Saud University - Computer and Information Sciences 26 (3) (2014) 332-346.
    [58] H.-b. Ouyang, L.-q. Gao, X.-y. Kong, D.-x. Zou, S. Li, Teaching-learning based optimization with global crossover for global optimization problems, Applied Mathematics and Computation 265 (2015) 533-556.
    [59] S. Chinta, R. Kommadath, P. Kotecha, A note on multi-objective improved teaching–learning based optimization algorithm (MO-ITLBO), Information Sciences 373 (2016) 337-350.
    [60] K. Yu, X. Wang, Z. Wang, Constrained optimization based on improved teaching–learning-based optimization algorithm, Information Sciences 352-353 (2016) 61-78.
    [61] L. Chen, Z. Qiao, M. Wang, C. Wang, R. Du, H.E. Stanley, Which Artificial Intelligence Algorithm Better Predicts the Chinese Stock Market?, IEEE Access 6 (2018) 48625-48633.
    [62] F. Zou, D. Chen, Q. Xu, A survey of teaching–learning-based optimization, Neurocomputing 335 (2019) 366-383.
    [63] M. Črepinšek, S.-H. Liu, L. Mernik, A note on teaching–learning-based optimization algorithm, Information Sciences 212 (2012) 79-93.
    [64] M.-Y. Cheng, D. Prayogo, Symbiotic Organisms Search: A new metaheuristic optimization algorithm, Computers & Structures 139 (2014) 98-112.
    [65] J.-S. Chou, N.-M. Nguyen, FBI Inspired Meta-Optimization, Applied Soft Computing (2019, under 2nd review).
    [66] K. Hussain, M. Salleh, S. Cheng, Y. Shi, Metaheuristic research: a comprehensive survey, 2018.
    [67] V. Braverman, R. Ostrovsky, C. Zaniolo, Optimal sampling from sliding windows, Journal of Computer and System Sciences 78 (1) (2012) 260-272.
    [68] R.-P. Mundani, J. Frisch, V. Varduhn, E. Rank, A sliding window technique for interactive high-performance computing scenarios, Advances in Engineering Software 84 (2015) 21-30.
    [69] C. Cortes, V. Vapnik, Support-Vector Networks, Machine Learning 20 (3) (1995) 273-297.
    [70] D. Karaboga, B. Akay, A comparative study of Artificial Bee Colony algorithm, Applied Mathematics and Computation 214 (1) (2009) 108-132.
    [71] R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, Proceedings of the 14th international joint conference on Artificial intelligence - Volume 2, Morgan Kaufmann Publishers Inc., Montreal, Quebec, Canada, 1995, pp. 1137-1143.
    [72] M.-W. Hsu, S. Lessmann, M.-C. Sung, T. Ma, J.E.V. Johnson, Bridging the divide in financial market forecasting: machine learners vs. financial economists, Expert Systems with Applications 61 (2016) 215-234.
    [73] L. Yu, H. Chen, S. Wang, K.K. Lai, Evolving Least Squares Support Vector Machines for Stock Market Trend Mining, IEEE Transactions on Evolutionary Computation 13 (1) (2009) 87-102.
    [74] C.M. Anish, B. Majhi, Hybrid nonlinear adaptive scheme for stock market prediction using feedback FLANN and factor analysis, Journal of the Korean Statistical Society 45 (1) (2016) 64-76.
    [75] A. Joseph, M. Larrain, C. Turner, Daily Stock Returns Characteristics and Forecastability, Procedia Computer Science 114 (2017) 481-490.
    [76] D. Bhattacharya, A. Konar, P. Das, Secondary factor induced stock index time-series prediction using Self-Adaptive Interval Type-2 Fuzzy Sets, Neurocomputing 171 (2016) 551-568.

    無法下載圖示 全文公開日期 2025/02/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE