簡易檢索 / 詳目顯示

研究生: 陳怡君
Yi-Chun Chen
論文名稱: 能預測非特徵諧波之 模組化多階層電力轉換器諧波模型
Harmonic Modeling of a Modular Multilevel Power Converter for Predicting Noncharacteristic Harmonics
指導教授: 連國龍
Kuo-Lung Lian
口試委員: 郭政謙
Cheng-Chien Kuo
黃維澤
Wei-Tzer Huang
蘇健翔
Kin-Cheong Sou
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 79
中文關鍵詞: 電壓源轉換器模組化多階層轉換器穩態分析諧波模型時間域模型
外文關鍵詞: Voltage source converter, Modular multilevel converter, Steady-state analysis, Harmonic models, Time domain methods
相關次數: 點閱:287下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本文中提出了MMC穩態精確模型,由於此模型是使用時間域的方法,因此輸出的諧波不會受到計算諧波的次數所影響。此外,由於VSC具有非線性和時變的特性,因此使用了疊代方法使模型充份表現出轉換器的穩態特性。本文也提出了一種混合方法,該方法在時間域中對MMC建模,而控制器則是在頻率域中建模,因此產生了高效的諧波模型。而使用所提出的方法來預測諧波,其結果與PSCAD/EMTDC相比,不僅計算時間比較少,而且具有很高的相似度,藉此證明了此方法的有效性。


In this thesis, an accurate steady-state model for an MMC is proposed by using time domain method, such that the output harmonics do not suffer from harmonic truncation errors. Moreover, because of the non-linear and time-varying nature of the VSC, an iterative approach is used in the models in order to fully characterize the steady-state behavior of the converter. This thesis also proposes a hybrid method, where the MMC is modeled in time domain while the controller is modeled in frequency domain, thus yielding a highly efficient harmonic model. The harmonics predicted by the proposed method are in great agreement with those of PSCAD/EMTDC, and the speed of calculation is faster than that of PSCAD/EMTDC, demonstrating the validity of the proposed method.

List of Figures List of Tables 1 Introduction 1.1 Background and motivation 1.2 Objective 1.3 Thesis Outline 2 Open-loop System 2.1 Frequency Coupling Matrices 2.2 Description of Submodules 2.3 State Space Equation of MMC 2.3.1 A Three-level MMC 2.3.2 An m-level MMC 2.3.3 Augment Harmonic States To Differential equations 2.3.4 Steady-State Analysis 2.4 Solution Flow Diagram 3 Control Strategy of MMC 3.1 Pulse Width Modulation (PWM) Schemes 3.1.1 Phase-shifted Pulse Width Modulation 3.1.2 Level-shifted Pulse Width Modulation 3.2 Reference Frame Theory 3.2.1 Stationary-abc Frame 3.2.2 Stationary- alphabeta Frame 3.2.3 synchronous-dq Frame 3.3 Standard Control Strategies of the MMC 3.3.1 Active and Reactive Power Controller 3.3.2 DC-bus Voltage Controller 3.3.3 Output Current Controller 3.3.4 Circulating Current Controller 4 Closed-loop System 4.1 Proposal Methodology 4.2 Hybrid Methods for modeling a MMC 4.3 Block Modeling in the Hybrid Method 4.3.1 MMC Model Block 4.3.2 Output Current Control Block 4.3.3 Circulating Current Control Block 4.3.4 Voltage Control Block 4.4 Solution Flow Diagram 5 Simulation Results 5.1 Parameters Setting 5.2 Case 1: Open-loop Condition 5.3 Case 2: Closed-loop Condition 6 Conclusion and Future Study 6.1 Summary 6.2 Future study REFERENCE

[1] J. Peralta, H. Saad, S. Dennetiere, J. Mahseredjian, and S. Nguefeu, Detailed and averaged models for a 401-level mmc-hvdc system, IEEE Transactions on Power Delivery, vol. 27, no. 3, pp. 1501-1508, 2012.
[2] S. P. Teeuwsen,Simplied dynamic model of a voltage-sourced converter with modular multilevel converter design,in 2009 IEEE/PES Power Systems Conference and Exposition, 2009, pp. 1-6.
[3] U. N. Gnanarathna, A. M. Gole, and R. P. Jayasinghe,Ecient modeling of modular multilevel hvdc converters (mmc) on electromagnetic transient simulation programs, IEEE Transactions on Power Delivery, vol. 26, no. 1, pp. 316-324, 2011.
[4] J. Xu, C. Zhao, W. Liu, and C. Guo,Accelerated model of modular multilevel converters in pscad/emtdc, IEEE Transactions on Power Delivery, vol. 28, no. 1, pp. 129-136, 2013.
[5] K. Ilves, A. Antonopoulos, S. Norrga, and H. Nee, Steady-state analysis of interaction between harmonic components of arm and line quantities of modular multilevel converters, IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 57-68, 2012.
[6] R. K. Subroto and K. L. Lian,Modeling of a multilevel voltage source converter using the fast time-domain method, in 2018 18th International Conference on Harmonics and Quality of Power (ICHQP), 2018, pp. 1-5.
[7] S. Li, X. Wang, Z. Yao, T. Li, and Z. Peng, Circulating current suppressing strategy for mmc-hvdc based on nonideal proportional resonant controllers under unbalanced grid conditions, IEEE Transactions on Power Electronics, vol. 30, no. 1, pp. 387-397, 2015.
[8] Jinyu Wang, Jun Liang, Chengfu Wang, and Xiaoming Dong,Circulating current suppression for mmc-hvdc under unbalanced grid conditions, in 2016 IEEE Industry Applications Society Annual Meeting, 2016, pp. 1-9.
[9] P. W. Lehn and K. L. Lian, Frequency coupling matrix of a voltage-source converter derived from piecewise linear dierential equations,IEEE Transactions on Power Delivery, vol. 22, no. 3, pp. 1603-1612, 2007.
[10]Modeling and simulation of the propagation of harmonics in electric power networks. i. concepts, models, and simulation techniques,IEEE Transactions on Power Delivery, vol. 11, no. 1, pp. 452-465, 1996.
[11] R. Carbone, A. Lo Schiavo, P. Marino, and A. Testa, A new method based on periodic convolution for sensitivity analysis of multi-stage conversion systems, in Ninth International Conference on Harmonics and Quality of Power. Proceedings (Cat. No.00EX441), vol. 1, 2000, pp. 69-74 vol.1.
[12] C. Saniter, A. R. Wood, R. Hanitsch, and D. Schulz, Modelling the eects of ac system impedance unbalance on pwm converters using frequency coupling matrices, in 2003 IEEE Bologna Power Tech Conference Proceedings, vol. 2, 2003, pp. 6 pp. Vol.2.
[13] S. Debnath, J. Qin, B. Bahrani, M. Saeedifard, and P. Barbosa, Operation, control, and applications of the modular multilevel converter: A review, IEEE Transactions on Power Electronics, vol. 30, no. 1, pp. 37-53, 2015.
[14] A. Nami, J. Liang, F. Dijkhuizen, and G. D. Demetriades,Modular multilevel converters for hvdc applications: Review on converter cells and functionalities,IEEE Transactions on Power Electronics, vol. 30, no. 1, pp. 18-36, 2015.
[15] M. A. Perez, S. Bernet, J. Rodriguez, S. Kouro, and R. Lizana, Circuit topologies, modeling, control schemes, and applications of modular multilevel converters, IEEE Transactions on Power Electronics, vol. 30, no. 1, pp. 4-17,
2015.
[16] S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L. G. Franquelo, B. Wu, J. Rodriguez, M. A. PÃcrez, and J. I. Leon,Recent advances and industrial applications of multilevel converters,IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2553-2580, 2010.
[17] S. Du, A. Dekka, B. Wu, and N. Zargari, Modular Multilevel Converters: Analysis, Control, and Applications, ser. IEEE Press Series on Power Engineering. Wiley, 2018. [Online]. Available: https://books.google.com.tw/books?id=__tQDwAAQBAJ
[18] K. L. Lian, Derivation of a small-signal harmonic model for closed-loop power converters based on the state-variable sensitivity method, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 4, pp. 833-845, 2012.
[19] P. W. Lehn, Direct harmonic analysis of the voltage source converter,IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 1034-1042, 2003.
[20] B. Wu, High-Power Converters and AC Drives. Wiley, 2007. [Online]. Available: https://books.google.com.tw/books?id=kJUCYVXBD78C
[21] B. Li, R. Yang, D. Xu, G. Wang, W. Wang, and D. Xu, Analysis of the phaseshifted carrier modulation for modular multilevel converters, IEEE Transactions on Power Electronics, vol. 30, no. 1, pp. 297-310, 2015.
[22] E. Solas, G. Abad, J. A. Barrena, S. Aurtenetxea, A. Carcar, and L. Zajac,Modular multilevel converter with dierent submodule concepts-part i: Capacitor voltage balancing method, IEEE Transactions on Industrial Electronics,
vol. 60, no. 10, pp. 4525-4535, 2013.
[23] B. P. McGrath, C. A. Teixeira, and D. G. Holmes, Optimized phase disposition (pd) modulation of a modular multilevel converter, IEEE Transactions on Industry Applications, vol. 53, no. 5, pp. 4624-4633, 2017.
[24] J. Mei, K. Shen, B. Xiao, L. M. Tolbert, and J. Zheng, A new selective loop bias mapping phase disposition pwm with dynamic voltage balance capability for modular multilevel converter, IEEE Transactions on Industrial Electronics, vol. 61, no. 2, pp. 798-807, 2014.
[25] A. Yazdani and R. Iravani, Space Phasors and Two-Dimensional Frames, 2010, pp. 69-114.
[26] A. Yazdani and R. Iravani, Voltage-Sourced Converters in Power Systems: Modeling, Control, and Applications, ser. Wiley - IEEE. Wiley, 2010. [Online]. Available: https://books.google.com.tw/books?id=_x_4Cu-BKwkC
[27] T. Islam, Application of modular multilevel converters (mmc) using phaseshifted pwm and selective harmonic elimination in distribution systems, 2018.
[28] P. Dong, J. Lyu, and X. Cai, Analysis and optimized control of mmc under asymmetric arm parameter conditions, in 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC) , 2018, pp. 1-6.
[29] Q. Tu, Z. Xu, and L. Xu, Reduced switching-frequency modulation and circulating current suppression for modular multilevel converters,IEEE Transactions on Power Delivery, vol. 26, no. 3, pp. 2009-2017, 2011.
[30] J. Freytes, G. Bergna, J. A. Suul, S. DArco, F. Gruson, F. Colas, H. Saad, and X. Guillaud, Improving small-signal stability of an mmc with ccsc by control of the internally stored energy,IEEE Transactions on Power Delivery, vol. 33, no. 1, pp. 429-439, 2018.
[31] A. Semlyen and A. Medina, Computation of the periodic steady state in systems with nonlinear components using a hybrid time and frequency domain methodology, IEEE Transactions on Power Systems, vol. 10, no. 3, pp. 1498-1504, 1995.
[32] J. Arrillaga, B. Smith, N. Watson, and A. Wood, Power System Harmonic Analysis. Wiley, 1997. [Online]. Available: https://books.google.com.tw/books?id=oFrQAmLj9VsC
[33] A. Semlyen, J. F. Eggleston, and J. Arrillaga, Admittance matrix model of a synchronous machine for harmonic analysis, IEEE Transactions on Power Systems, vol. 2, no. 4, pp. 833-839, 1987.

無法下載圖示 全文公開日期 2025/08/12 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE