簡易檢索 / 詳目顯示

研究生: 紀培錦
Pei-Chin Chi
論文名稱: 單相DC/AC電壓轉換器的併網控制法與效率提升
A Grid-Tie Control Scheme and Efficiency Optimization for Single-Phase DC/AC Voltage-Sourced Converter
指導教授: 邱煌仁
Huang-Jen Chiu
謝耀慶
Yao-Ching Hsieh
口試委員: 劉益華
邱煌仁
謝耀慶
林長華
張永農
王見銘
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 134
中文關鍵詞: 分散式電力系統諧波電流四象限併網單位功率因數整流器ZVS-CV漣波電流
外文關鍵詞: distributed power generation system, harmonic current, four-quadrant grid-tie, unity power factor rectifier, ZVS-CV, ripple current
相關次數: 點閱:193下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單相分散式電力系統使再生能源得以分佈於一般家庭場所,並將所生電力傳輸至公共電網,而其架構通常含直流(Direct Current, DC)電網與交流(Alternating Current, AC)電網,並有雙向DC/AC轉換器在兩電網之間擔任轉換與流通電力之介面。為在降低AC電網諧波電流的同時,也簡化該DC/AC轉換器對AC電網之併網控制(Grid-Tie Control, GTC),本研究提出一種電壓導向的四象限GTC方法,以用於單相DC/AC電壓型轉換器,使之能適用於單位功率因數整流器、逆變器、或靜態型虛功補償器等模式,而從系統角度提高電力傳輸品質與效率。另則從元件角度,亦可藉由零電壓切換-箝位電壓型(Zero Voltage Switching-Clamped Voltage, ZVS-CV)之柔切設計,消減DC/AC切換式轉換器的切換損失以提升效率,並因此能用高切換速度的金屬氧化物半導體場效電晶體 (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)開關以提高轉換器的切換頻率,而使得散熱器及切換頻率濾波器的體積皆可縮小,則更適用家庭場所的單相系統。欲確保ZVS-CV運作,DC/AC轉換器的儲能電感必須流動高漣波電流,則將增加MOSFET的導通損失,因而該漣波電流應是在恰能確保ZVS-CV運作即可,為此,本研究提出了優化漣波電流的策略以使DC/AC轉換器獲得最佳效率。最後,本研究以一個單周控制的全橋式電壓型轉換器,以2 A電流對110 V AC電網進行模擬與實作,以驗證所提GTC方法,並評估它的效能。然後,在220 V AC獨立型逆變器輸出約1 kW的條件下進行模擬,以比較有無導入所提優化策略的轉換器效率差異,而驗證該策略的效益。


    Single-phase distributed power generation system enables renewable energies to be distributed over residential sites and transfers the generated electricity to utility grid, wherein it is usually with direct-current (DC) and alternating-current (AC) grids interfaced by a DC/AC converter which converts and flows the electricity between the grids. To reduce harmonic current and simplify the grid-tie control (GTC), this study proposes a voltage-oriented control scheme for four-quadrant grid-tie of a single-phase DC/AC voltage-sourced converter (VSC) to operate smartly at modes of unity power factor rectifier, inverter, or static VAR compensator. The proposed GTC, in system view, reduces harmonic current and enhances the quality and efficiency for power transfer. Nonetheless, in component view, Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) can be utilized to raise switching frequency while Zero Voltage Switching-Clamped Voltage (ZVS-CV) technique eliminates switching loss. Then, heat sink and filter can both be shrunk so that compact VSC can fit the single-phase system in residential site. In order to ensure the ZVS-CV operation, the energy-storing choke of VSC must flow high ripple current that trades off conduction loss of MOSFETs, it motivates this study to propose strategies to optimize the ripple current and efficiency. Simulations and experiments are conducted with a One-Cycle controlled full-bridge VSC to verify the proposed GTC and evaluate its performance for 110 V AC grid under 2 A. Simulations are conducted to compare efficiencies of the 220 V AC inverters about 1 kW load with and without the proposed optimization strategies.

    中文摘要 英文摘要 誌謝 目錄 圖索引 表索引 符號索引 英文縮寫索引 中英名詞對照 第一章、緒論 1.1 研究背景與目標 1.2 文獻回顧 1.2.1 GTC之文獻回顧 1.2.2開關元件功率損失與柔切技術之文獻回顧 1.3 本研究之貢獻 1.4 論文章節綱要 第二章、本研究相關基礎原理介紹與探討 2.1 併網濾波器介紹 2.2 諧波失真條件下的PF計算法 2.3 UPFR 降低AC電網諧波電流的原理 2.4 雙向DC/AC VSC的架構與調變方法 2.5 MOSFET開關的功率損失 2.6 ZVS-CV原理 2.7 擺動型扼流圈介紹 2.8 OCC 原理 第三章、GTC的工作原理及設計 3.1 GTC控制器的架構與控制法則 3.2 GTC 控制器的BPF設計 3.3 GTC 控制器的微分器設計 3.4 用以驗證GTC 控制器的OCC VSC 第四章、ZVS-CV優化效率之策略 50 4.1 確保ZVS-CV運作的條件與其控制方法 4.1.1確保ZVS-CV運作的條件 4.1.2儲能電感漣波電流的控制參數 4.2 所提ZVS-CV漣波電流的優化策略 4.2.1對稱全波控制的FB Buck Inverter之優化策略 4.2.2非對稱半波控制的FB Inverter之優化策略 第五章、驗證GTC方法 5.1 模擬的驗證 5.1.1 BPF與微分器的功能 5.1.2 UPFR與Inverter模式的轉換 5.1.3 對AC電網條件變動的免疫力 5.1.4 UPFR模式能降低電網諧波電流 5.2 實作的驗證 5.2.1 OCC FB VSC的輸出電壓 5.2.2 VSC與AC電網以四個模式流通電力 5.2.3 在四個模式下VSC與DC電網的電力流通 5.2.4 以所提GTC將FB Buck-Boost VSC併聯至AC電網 第六章、驗證ZVS-CV優化效率之策略 6.1 對稱全波控制FB Buck Inverter的驗證 6.1.1 採用所提優化策略的模擬結果 6.1.2 未採用所提策略的結果與比較 6.2 非對稱半波控制FB Inverter的驗證 6.2.1 採用所提優化策略的模擬結果 6.2.2 未採用所提策略的結果與比較 6.3 效率數值與曲線圖 第七章、總結與未來展望 參考文獻 作者簡介

    [1] Z. Zeng, R. X. Zhao, and H. Yang, “Coordinated Control of Multi-Functional Grid-Tied Inverters Using Conductance and Susceptance Limitation”, IET Power Electronics, vol. 7, no. 7, pp. 1821-1831, 2014.
    [2] J. Gallardo-Lozano, E. Romero-Cadaval, V. Minambres-Marcos, D. Vinnikov, T. Jalakas, and H. Hõimoja, “Grid Reactive Power Compensation by Using Electric Vehicles”, in Proc. IEEE Electric Power Quality and Supply Reliability Conference (PQ) 2014, Rakvere, Estonia, 11-13 June 2014, pp. 19-24.
    [3] M. M. Amin and O. A. Mohammed, “A Variable Line Filter for Active and Reactive Power Control through Grid-Tie-Inverter as a Dynamic VAR Compensator for WECS”, in Proc. IEEE Power and Energy Society General Meeting (PES) 2013, Vancouver BC, Canada, 21-25 July 2013, pp. 1-5.
    [4] H. Qian, J. Zhang, J. S. Lai, and W. Yu, “A High-Efficiency Grid-Tie Battery Energy Storage System”, IEEE Trans. on Power Electronics, vol. 26, no. 3, pp.886-896, Mar. 2011.
    [5] P. W. Sun, C. Liu, J. S. Lai, and C. L. Chen, “Grid-Tie Control of Cascade Dual-Buck Inverter with Wide-Range Power Flow Capability for Renewable Energy Applications”, IEEE Trans. on Power Electronics, vol. 27, no. 4, pp. 1839-1849, Apr. 2012.
    [6] I. Purnama, P. C. Chi, Y. C. Hsieh, J. Y. Lin, and H. J. Chiu, “One Cycle Controlled Grid-Tied Differential Boost Inverter”, IET Power Electronics, vol. 9, no. 11, pp. 2216-2222, 2016.
    [7] S. W. Kang and K. H. Kim, “Sliding Mode Harmonic Compensation Strategy for Power Quality Improvement of a Grid-Connected Inverter under Distorted Grid Condition”, IET Power Electronics, vol. 8, no. 8, pp. 1461-1472, 2015.
    [8] M. Monfared, M. Sanatkar, and S. Golestan, “Direct Active and Reactive Power Control of Single-Phase Grid-Tie Converters”, IET Power Electronics, vol. 5, no. 8, pp. 1544-1550, 2012.
    [9] M. Sanatkar-Chayjani and M. Monfared, “Simple Digital Current Control Strategy for Single-Phase Grid-Connected Converters”, IET Power Electronics, vol. 8, no. 2, pp. 245-254, 2015.
    [10] B. Burger and A. Engler, “Fast Signal Conditioning in the Single Phase Systems”, in Proc. The 9th Eur. Conf. Power Elect. Appl. 2001, Graz, Austria.
    [11] C. Adragna. (2003. Mar.). L6561, Enhanced Transition Mode Power Factor Corrector. [Online]. Available: http://www.st.com/web/en/resource/technical/document/application_note/CD00004002.pdf.
    [12] Y. Chen and K. M. Smedley, “A Cost-Effective Single-Stage Inverter with Maximum Power Point Tracking”, IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1289-1294, Sep. 2004.
    [13] F. Blaabjerg, R. Teodorescu, M. Liserre, and V. Timbus, “Overview of Control and Grid Synchronization for Distributed Power Generation Systems”, IEEE Trans. on Ind. Electron., vol. 53, no. 5, pp. 1398-1409, Oct. 2006.
    [14] M. Ciobotaru, Reliable Grid Condition Detection and Control of Single-Phase Distributed Power Generation Systems, Ph.D. Thesis, University of New South Wales, 2009, Ch. 2.
    [15] M. Ciobotaru, R. Teodorescu, and F. Blaabjerg, “A New Single-Phase PLL Structure Based on Second Order Generalized Integrator”, in Proc. IEEE The 37th Annual Power Electronics Specialists Conference 2006, PESC’06, 18-22 June 2006, pp. 1-6.
    [16] S. M. Silva, B. M. Lopes, B. J. C. Filho, R. P. Campana, and W. C. Bosventura, “Performance Evaluation of PLL Algorithms for Single-phase Grid-connected Systems”, in Proc. IEEE The 39th Annual Industry Applications Conference (IAS) 2004, vol. 4, 3-7 Oct. 2004, pp. 2259- 2263.
    [17] R. J. Ferreira, R. E. Araújo, and J. A. Peças Lopes, “A Comparative Analysis and Implementation of Various PLL Techniques Applied to Single-phase Grids”, in Proc. IEEE The 3rd International Youth Conference on Energetics (IYCE) 2011, Leiria, Portugal, 7-9 July 2011, pp. 1-8.
    [18] R. M. S. Filho, P. F. Seixas, P. C. Cortizo, L. A. B. Torres, and A. F. Souza, “Comparison of Three Single-Phase PLL Algorithms for UPS Applications”, IEEE Trans. on Ind. Electron., vol. 55, no. 8, pp. 2923-2932, Aug. 2008.
    [19] K. De Brabandere, T. Loix, K. Engelen, B. Bolsens, J. Van den Keybus, J. Driesen, and R. Belmans, “Design and Operation of a Phase-Locked Loop with Kalman Estimator-Based Filter for Single-Phase Applications”, in Proc. IEEE The 32nd Annual Conference on Industrial Electronics (IECON) 2006, Paris, 6-10 Nov. 2006, pp. 525-530.
    [20] T. Z. Bei and P. Wang, “Robust Frequency-Locked Loop Algorithm for Grid Synchronisation of Single-Phase Applications under Distorted Grid Conditions”, IET Generation, Transmission and Distribution, vol. 10, no. 11, pp. 2593-2600, 2016.
    [21] Y. F. Wang and Y. W. Li, “A Grid Fundamental and Harmonic Component Detection Method for Single-Phase Systems”, IEEE Trans. on Power Electronics, vol. 28, no. 5, May 2013, pp. 2204-2213.
    [22] M. S. Reza, M. Ciobotaru, and V. G. Agelidis, “Accurate Estimation of Single-Phase Grid Voltage Parameters under Distorted Conditions”, IEEE Trans. on Power Delivery, vol. 29, no. 3, pp. 1138-1146, June 2014.
    [23] M. S. Reza, M. Ciobotaru, and V. G. Agelidis, “Robust Technique for Accurate Estimation of Single Phase Grid Voltage Fundamental Frequency and Amplitude”, IET Generation, Transmission and Distribution, vol. 9, no. 2, pp. 183-192, May 2015.
    [24] H. Zhu, B. Arnet, L. Haines, E. Shaffer, and J. S. Lai, “Grid Synchronization Control without AC Voltage Sensors”, in Proc. IEEE The 18th Annual Applied Power Electronics Conference and Exposition 2003, APEC’03, 9-13 Feb. 2003, vol. 1, pp. 172-178.
    [25] J. W. Brown and R. V. Churchill, Complex Variables and Applications , 8th edition, NY: McGRAW-HILL Press, 2009, Ch.1-3.
    [26] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd edition, NJ: John Wiley & Sons, 2002, ©2003, ch. 2,3,7-9,18.
    [27] D. Costinett. (2013, Fall). Lecture 7: MOSFET, IGBT, and Switching Loss. [Online]. Available: http://web.eecs.utk.edu/~dcostine/ECE481/
    fall2013/lectures/L7_slides.pdf
    [28] A. Sattar. (2010). Power MOSFET Basics, IXYS Corporation, IXAN0061. [Online]. Available: http://www.ixys.com/Documents/AppNotes/IXAN0061.pdf
    [29] Toshiba Corporation. (2016, Nov. 10). Power MOSFET Electrical Characteristics. [Online]. Available: https://toshiba.semicon-storage.com/info/docget.jsp?did=13415
    [30] P. Haaf and J. Harper. (2007). Understanding Diode Reverse Recovery and its Effect on Switching Losses, Fairchild Semiconductor Europe, Power Seminar 2007. [Online]. Available: https://www.fairchildsemi.com/technical-articles/Understanding-Diode-Reverse-Recovery-and-Its-Effect-on-Switching-Losses.pdf
    [31] A. Huang. (2014, Mar. 12). Hard Commutation of Power MOSFET, Infineon Technologies, AN 2014-03. [Online]. Available: http://www.infineon.com/dgdl/Infineon+-+Application+Note+-+Power+MOSFETs+-+OptiMOS+200V+250V.pdf?fileId=db3a304344ae06150144b1d2f8250165
    [32] D. Jauregui, B. Wang, and R. Chen. (2011, June–Revised 2011, July). Power Loss Calculation With Common Source Inductance Consideration for Synchronous Buck Converters, Texas Instruments, SLPA009A. [Online]. Available: http://www.ti.com/lit/an/slpa009a/slpa009a.pdf
    [33] J. Klein. (2014, Nov. 21). Synchronous Buck MOSFET Loss Calculations with Excel Model, Fairchild Semiconductor, AN-6005. [Online]. Available: http://www.bdtic.com/datasheet/fairchild/AN-6005.pdf
    [34] P. C. Chi, C. Y. Chou, M. Tampubolon, Y. C. Hsieh, J. Y. Lin, and H. J. Chiu, “High Power Density Asymmetrical Full-Bridge Soft-Switching Inverter”, in Proc. IEEE The 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia) 2015, Seoul, Korea, 1-5 June 2015, pp. 322-327.
    [35] Y. S. Xue, L. C. Chang, S. B. Kjær, J. Bordonau, and T. Shimizu, “Topologies of Single-Phase Inverters for Small Distributed Power Generators, an Overview”, IEEE Trans. on Power Electronics, vol. 19, no. 5, pp. 1305-1314, Sep. 2004.
    [36] N. Vazquez, J. Almazan, J. Alvarez, C. Aguilar, and J. Arau, “Analysis and Experimental Study of Buck, Boost, and Buck-Boost Inverters”, in Proc. IEEE The 30th Annual Power Electronics Specialists Conference 1999, PESC’99, Charleston, SC, USA, 27 June - 01 July 1999, vol. 2, pp. 801-806.
    [37] Infineon Technologies. (2014, Dec. 2). IPx60R099C6, 600V CoolMOSTM C6 Power Transistor. [Online]. Available: http://www.infineon.com/dgdl?fileId=db3a30432313ff5e012394d25bd3069e
    [38] STMicroelectronics. (2007, Apr.). STW45NM60, N-channel 650V MDmesh™ Power MOSFET. [Online]. Available: http://www.st.com/content/ccc/resource/technical/document/datasheet/15/a9/7a/28/01/7c/43/44/CD00002682.pdf/files/CD00002682.pdf/jcr:content/translations/en.CD00002682.pdf
    [39] K. M. Smedley, Control Art of Switching Converters, Ph.D. Thesis, California Institute of Technology, 1990, Ch. 6.
    [40] E. Santi and S. ´Cuk, “Modeling of One-Cycle Controlled Switching Converters”, in Proc. IEEE The 14th International Telecommunications Energy Conference 1992, INTELEC '92, Washington, DC, USA, Dec. 1992, vol. 5, no. 2, pp. 131-138.
    [41] K. M. Smedley and S. ´Cuk, “One-Cycle Control of Switching Converters”, IEEE Trans. on Power Electronics, vol. 10, no. 6, pp. 625-633, Nov. 1995.
    [42] J. Lettl, J. Bauer, and L. Linhart, “Comparison of Different Filter Types for Grid Connected Inverter”, in Proc. Progress In Electromagnetics Research Symposium, Marrakesh, Morocco, 20-23 Mar. 2011, pp. 1426-1429.
    [43] A. Reznik, M. G. Simões, A. Al-Durra, and S. M. Muyeen, “LCL Filter Design and Performance Analysis for Grid Interconnected Systems”, IEEE Trans. on Industry Applications, vol. 50, no. 2, pp. 1225-1232, Mar. - Apr. 2014.
    [44] W. Wu, Y. He, T. Tang, and F. Blaabjerg, “A New Design Method for the Passive Damped LCL and LLCL Filter-Based Single-Phase Grid-Tied Inverter”, IEEE Trans. on Industrial Electronics, vol. 60, no. 10, pp. 4339-4350, Oct. 2013.
    [45] W. Wu, Y. He, and F. Blaabjerg, “An LLCL Power Filter for Single-Phase Grid-Tied Inverter”, IEEE Trans. on Power Electronics, vol. 27, no. 2, pp. 782-789, Feb. 2012.
    [46] I. E. Collin and I. Barbi, “A Reversible Step-Up Voltage-Source Inverter Controlled by Sliding Mode”, in Proc. IEEE The 30th Annual Power Electronics Specialists Conference 1999, PESC’99, Charleston, SC, USA, 27 June - 01 July 1999, vol. 1, pp. 538-543.
    [47] P. Sanchis, A. Ursæa, E. Gubía, and L. Marroyo, “Boost DC–AC Inverter: A New Control Strategy”, IEEE Trans. on Power Electronics, vol. 20, no. 2, pp. 343-353, 21 Mar. 2005.
    [48] P. Sanchis, A. Ursæa, E. Gubía, and L. Marroyo, “Buck-Boost DC-AC Inverter: Proposal for a New Control Strategy”, in Proc. IEEE The 35th Annual Power Electronics Specialists Conference 2004, PESC’04, Aachen, Germany, 20-25 June 2004, vol. 5, pp. 3994-3998.
    [49] A. I. Pressman, K. Billings, T. Morey, Switching Power Supply Design, 3rd edition, NY: The McGraw-Hill Companies, 2009, Ch.7.
    [50] Magnetics. (2015). Powder Cores. [Online]. Available: https://www.mag-inc.com/getattachment/Design/Design-Guides/2015-Magnetics-Powder-Core-Catalog.pdf?lang=en-US
    [51] Chang Sung Corporation. Magnetic Powder Cores, Ver. 13. [Online]. Available: http://www.mhw-intl.com/assets/CSC/CSC_Catalog.pdf
    [52] L. M. Faulkenberry, An Introduction to Operational Amplifiers, with Linear IC Applications, 2nd edition, NJ: John Wiley & Sons, 1982, Ch.8.
    [53] Texas Instruments. (2013, May). An Applications Guide for Op Amps, AN-20. [Online]. Available: http://www.ti.com/lit/an/snoa621c/ snoa621c.pdf
    [54] Texas Instruments. (2015, May). TL08xx JFET-Input Operational Amplifiers. [Online]. Available: http://www.ti.com/lit/ds/symlink/ tl082.pdf
    [55] Infineon Technologies. (2005, Mar. 23). IR2110(-1-2)(S)PbF/IR2113(-1-2)(S)PbF, High and Low Side Driver. [Online]. Available: http://www.infineon.com/dgdl/ir2110.pdf?fileId=5546d462533600a4015355c80333167e

    無法下載圖示 全文公開日期 2022/08/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE