簡易檢索 / 詳目顯示

研究生: 陳品宏
Pin-Hong CHEN
論文名稱: 基於3D列印振幅與相位可調之Ka頻帶透射陣列天線
Ka-Band Amplitude and Phase Controllable Transmitarray based on 3D-Printing Technology
指導教授: 馬自莊
Tzyh-Ghuang Ma
口試委員: 廖文照
Wen-Jiao Liao
侯元昌
Yuan-Chang Hou
陳晏笙
Yen-Sheng Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 107
中文關鍵詞: 透射陣列天線全介質天線介質量測天線陣列毫米波3D列印振幅可控相位可控
外文關鍵詞: Transmitarray, full dielectric antenna, dielectric measurement, antenna array, millimeter wave, 3D printing, amplitude control, phase control
相關次數: 點閱:210下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究主題為「基於3D列印之振幅與相位可調Ka頻帶透射陣列天線」。低軌衛星通訊產業日漸崛起,將可解決5G通訊覆蓋率不足的問題,因此選擇Ka頻段之衛星通訊天線進行設計。目前在天線的設計上大部分採用印刷電路板為主,但近年來3D列印技術的成熟,在耐用度及材料強度上皆有不錯的表現,結構設計上也較印刷電路板簡單,且單一製作的成本也相對印刷電路板低,因此吾人採用3D列印製成的方式進行天線設計。
    在陣列天線中具有高指向性和低旁瓣位準可提高通信系統的可靠性和有效性。所以為了獲得較理想的波束指向及旁波瓣(Side lobe, SL),本研究透過3D列印印製多層架構,使單元具備振幅可調及相位可調之能力。在設計上分為兩部分進行設計,首先,振幅調控單元設計中分為四種不同型式,使穿透功率的振幅可在0.37-0.99之間變化,且每一型式之單元調控過程均可達成小於 ±15°之相位波動變化;其次,相位控制單元則透過不同介質厚度的中心層和兩個線性錐形匹配層組成,使相位可涵蓋完整 360°且 |S21| 均保持低於-0.25 dB。在實作量測時因計算誤差只使用相位可調之單元,完整整合將列為未來工作。
    最終在中心頻率38 GHz實現以1268個單元組合而成直徑為13 λo(102.6 mm)的3D列印透射陣列天線,其量測最高增益為26.3 dBi,孔徑效率為23%。


    This thesis develops a Ka-band amplitude and phase controllable transmitarray using 3D-printing technology. The rise of the low-orbit satellite communication industry has drawn considerable attention, which may capable of improving the coverage of current 5G system. Currently, the antennas are mostly manufactured by using the printed circuit board technology (PCB), which suffer from drawbacks including robustness and cost. To address the problem, 3D printed structures featuring high durability, low cost, and flexibility in manufacturing can be adopted.
    The performance of an array antenna can be improved by enhancing the directivity and suppressing the sidelobe level (SLL). In this thesis, we propose a 3D printing transmitarray that is capable of adjusting its amplitude and phase distributions. The design is divided into two parts. Firstly, by using four distinct types of amplitude control units, the level of the transmitting power can be tuned from 0.37 to 0.99 with a limited phase fluctuation (±15° at maximum). Secondly, the phase control unit is implemented by the combination of a central layer with different dielectric thicknesses and two linearly tapered matching layers. The proposed design covers a complete 360°, while the value of |S21| is smaller than -0.25 dB. Due to miscalculation, there are only phase control unit is used in the final implementation verification. The whole integration will be a future work.
    Finally, a 3D printed transmitarray with a diameter of 13 λo (102.6 mm) is fulfilled and experimentally validated by combining 1268 elements at a center frequency of 38 GHz, with a maximum gain of 26.3 dBi and an aperture efficiency of 23%.

    摘要 I Abstract II 誌謝 IV 目錄 VI 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻探討 3 1.3 研究貢獻 6 1.4 論文組織 7 第二章 3D列印透射陣列之設計與分析 8 2.1. 前言 8 2.2. 3D列印透射陣列之設計流程 9 2.3. 3D列印材料介電系數之分析 11 2.3.1 概論 11 2.3.2 介電系數萃取方法之原理分析模擬 13 2.3.3 介電系數萃取方法之實作 18 2.4. 透射陣列單元分析及設計 26 2.4.1 3D列印振幅控制單元設計 26 2.4.2 3D列印相位控制單元設計 38 2.4.3 3D列印振幅控制單元及相位控制單元整合 44 2.4.4 3D列印單元斜向入射與極化關係 53 2.5. 結語 61 第三章 3D列印透射陣列之設計及驗證 62 3.1. 前言 62 3.2. 3D列印透射陣列之設計 62 3.2.1. 饋入天線特性分析 63 3.2.2. 孔徑效率分析及探討 65 3.2.3. 相控單元相位分佈計算分析與實現 68 3.2.4. 具振幅可控3D列印透射陣列之設計 72 3.3. 3D列印透射陣列之驗證 76 3.3.1. 饋入號角天線之驗證 76 3.3.2. 3D列印透射陣列之系統實作 79 3.3.3. 3D列印透射陣列之系統驗證 82 3.4. 透射陣列之比較 92 3.5. 結語 96 第四章 結論 97 4.1 總結 97 4.2 未來發展 98 參考文獻 100

    [1] Abdelrahman, Ahmed H., et al. "Analysis and design of transmitarray antennas." Synthesis Lectures on Antennas 6.1 (2017): 1-175.
    [2] C. Tienda, A. Katsounaros and S. Stirland, "Dual Reflectarray Ka-band Multibeam Antenna," 2019 13th European Conference on Antennas and Propagation (EuCAP), 2019.
    [3] David M. Pozar, Stephen D. Targonski, and H. D. Syrigos, "Design of millimeter wave microstrip reflectarrays," IEEE Trans. Antennas Propag., vol. 45, no. 2, pp.287-296, Feb. 1997.
    [4] W. An, S. Xu and F. Yang, "A Metal-Only Reflectarray Antenna Using Slot-Type Elements," in IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1553-1556, 2014.
    [5] J. Huang and R. J. Pogorzelski, "A Ka-band microstrip reflectarray with elements having variable rotation angles," in IEEE Transactions on Antennas and Propagation, vol. 46, no. 5, pp. 650-656, May 1998.
    [6] 黃柏霖, 應用於X頻代支可重構是全金屬反射陣列天線, 國立台灣科技大學電機工程研究所, 碩士論文, 民國110
    [7] 李明哲, X頻代寬頻化反射陣列 /W頻帶圓極化反射陣列, 國立台灣科技大學電機工程研究所, 碩士論文, 民國111
    [8] J. R. Reis, M. Vala and R. F. S. Caldeirinha, "Review Paper on Transmitarray Antennas," in IEEE Access, vol. 7, pp. 94171-94188, 2019.
    [9] B. J. Xiang, X. Dai and K. -M. Luk, "A Wideband 2-Bit Transmitarray Antenna for Millimeter-Wave Vehicular Communication," in IEEE Transactions on Vehicular Technology, vol. 71, no. 9, pp. 9202-9211, Sept. 2022.
    [10] J. Yang et al., "Folded Transmitarray Antenna With Circular Polarization Based on Metasurface," in IEEE Transactions on Antennas and Propagation, vol. 69, no. 2, pp. 806-814, Feb. 2021.
    [11] A. Ahmed, M. R. Robel and W. S. T. Rowe, "Transmitarray based Metasurface Lens Antenna," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 2019.
    [12] D. D. Le, B. D. Nguyen, M. T. Nguyen and V. S. Tran, "X-band transmitarray unit-cell with 1-bit phase control," 2017 IEEE Conference on Antenna Measurements & Applications (CAMA), 2017.
    [13] J. Hu and H. Wong, "A Wideband Magneto-Electric Dipole Transmitarray for Linear to Circular Polarzation Conversion," 2022 16th European Conference on Antennas and Propagation (EuCAP), 2022.
    [14] O. Koutsos, F. F. Manzillo, A. Clemente and R. Sauleau, "Wideband High-Gain Transmitarray Antenna for Point-to-Point Communications at 300 GHz," 2021 51st European Microwave Conference (EuMC), 2022.
    [15] A. Massaccesi et al., "3D-Printable Dielectric Transmitarray With Enhanced Bandwidth at Millimeter-Waves," in IEEE Access, vol. 6, pp. 46407-46418, 2018.
    [16] S. Zhang, Y. Vardaxoglou, W. Whittow and R. Mittra, "3D-printed graded index lens for RF applications," 2016 International Symposium on Antennas and Propagation (ISAP), 2016.
    [17] H. Yi, S. -W. Qu, K. -B. Ng, C. H. Chan and X. Bai, "3-D Printed Millimeter-Wave and Terahertz Lenses with Fixed and Frequency Scanned Beam," in IEEE Transactions on Antennas and Propagation, vol. 64, no. 2, pp. 442-449, Feb. 2016.
    [18] D. G. Berry, R. G. Malech and W. A. Kennedy, "The reflectarray antenna," IEEE Trans. Antennas Propag., vol. AP-11, pp. 645-651, Nov. 1963.
    [19] King-Wai Lam, Sze-Wai Kwok, Yeongming Hwang and T. K. Lo, "Implementation of transmitarray antenna concept by using aperture-coupled microstrip patches," Proceedings of 1997 Asia-Pacific Microwave Conference, 1997.
    [20] S. Datthanasombat, A. Prata, L. R. Arnaro, J. A. Harrell, S. Spitz and J. Perret, "Layered lens antennas," IEEE Antennas and Propagation Society International Symposium. 2001.
    [21] A. H. Abdelrahman, A. Z. Elsherbeni and F. Yang, "Transmission Phase Limit of Multilayer Frequency-Selective Surfaces for Transmitarray Designs," in IEEE Transactions on Antennas and Propagation, vol. 62, no. 2, pp. 690-697, Feb. 2014.
    [22] M. R. Chaharmir, A. Ittipiboon and J. Shaker, "Single-band and dual-band multilayer transmitarray antennas," 2006 12th International Symposium on Antenna Technology and Applied Electromagnetics and Canadian Radio Sciences Conference, 2006.
    [23] A. H. Abdelrahman, A. Z. Elsherbeni and F. Yang, "High-Gain and Broadband Transmitarray Antenna Using Triple-Layer Spiral Dipole Elements," in IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1288-1291, 2014.
    [24] J. Yu, L. Chen and X. Shi, "A Multilayer Dipole-Type Element for Circularly Polarized Transmitarray Applications," in IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1877-1880, 2016.
    [25] S. Sadeghi-Marasht, M. S. Sharawi and A. Zhu, "A Millimeter-Wave Multilayer Lens Antenna for Circularly Polarized Applications," 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), 2021.
    [26] P. P. de la Torre and M. S. Castaner, "Transmitarray for Ku Band," The Second European Conference on Antennas and Propagation, EuCAP 2007, 2007.
    [27] H. Kaouach, L. Dussopt, R. Sauleau and T. Koleck, "X-band transmit-arrays with linear and circular polarization," Proceedings of the Fourth European Conference on Antennas and Propagation, 2010.
    [28] H. Kaouach, L. Dussopt, J. Lanteri, T. Koleck and R. Sauleau, "Wideband Low-Loss Linear and Circular Polarization Transmit-Arrays in V-Band," in IEEE Transactions on Antennas and Propagation, vol. 59, no. 7, pp. 2513-2523, July 2011.
    [29] K. Pham, R. Sauleau, A. Clemente and L. Dussopt, "Electronically Reconfigurable Unit-Cell and Transmitarray in Dual-Linear Polarization at Ka-Band," 2019 13th European Conference on Antennas and Propagation (EuCAP), 2019.
    [30] X. Dai, G. -B. Wu and K. -M. Luk, "A Wideband Circularly Polarized Transmitarray Antenna for Millimeter-Wave Applications," in IEEE Transactions on Antennas and Propagation, 2022.
    [31] S. Kamada, N. Michishita and Y. Yamada, "Metamaterial lens antenna using dielectric resonators for wide angle beam scanning," 2010 IEEE Antennas and Propagation Society International Symposium, 2010.
    [32] Y. Zhang, R. Mittra, and W. Hong, On the synthesis of a flat lens using a wideband low-reflection gradient-index metamaterial, Journal of Electromagnetic Waves and Applications,vol. 25, no. 16, pp. 2178–2187, 2012.
    [33] S. Foo, "Metamaterial-based transmitarray for orthogonal-beam-space massive-MIMO," 2016 10th European Conference on Antennas and Propagation (EuCAP), 2016.
    [34] Q. Zheng et al., “Ultra-wideband side-lobe level suppression using amplitude-adjustable metasurfaces,” J. Phys. D, Appl. Phys., vol. 52,no. 6, Feb. 2019.
    [35] H. Li, G. Wang, T. Cai, H. Hou, and W. Guo, “Wideband transparent beam-forming metadevice with amplitude- and phase-controlled meta-surface,” Phys. Rev. A, Gen. Phys. Appl., vol. 11, no. 1, Jan. 2019.
    [36] J. Luo and T. J. Cui, "2-Bit Ultrathin Amplitude-Modulated Coding Metasurfaces with Inserted Chip Resistors," 2019 IEEE International Conference on Computational Electromagnetics (ICCEM), 2019.
    [37] Q. Lou and Z. N. Chen, "Sidelobe Suppression of Metalens Antenna by Amplitude and Phase Controllable Metasurfaces," in IEEE Transactions on Antennas and Propagation, vol. 69, no. 10, pp. 6977-6981, Oct. 2021.
    [38] H. -P. Li, G. -M. Wang, T. Cai, J. -G. Liang and X. -J. Gao, "Phase- and Amplitude-Control Metasurfaces for Antenna Main-Lobe and Sidelobe Manipulations," in IEEE Transactions on Antennas and Propagation, vol. 66, no. 10, pp. 5121-5129, Oct. 2018.
    [39] A. Lalbakhsh, M. U. Afzal, B. A. Zeb and K. P. Esselle, "Design of a dielectric phase-correcting structure for an EBG resonator antenna using particle swarm optimization," 2015 International Symposium on Antennas and Propagation (ISAP), 2015.
    [40] M. U. Afzal, K. P. Esselle and B. A. Zeb, "Dielectric Phase-Correcting Structures for Electromagnetic Band Gap Resonator Antennas," in IEEE Transactions on Antennas and Propagation, vol. 63, no. 8, pp. 3390-3399, Aug. 2015
    [41] M. U. Afzal, K. P. Esselle and A. Biswas, "A method to enhance radiation characteristics by improving aperture phase distribution of electromagnetic bandgap resonators antennas," 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA), 2015.
    [42] M. Wang, S. Xu, F. Yang and M. Li, "Design of a Ku-band triple-layer perforated dielectric transmitarray antenna," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), 2016, pp. 1381-1382, doi: 10.1109/APS.2016.
    [43] H. Yi, S. -W. Qu, K. -B. Ng, C. H. Chan and X. Bai, "3-D Printed Millimeter-Wave and Terahertz Lenses with Fixed and Frequency Scanned Beam," in IEEE Transactions on Antennas and Propagation, vol. 64, no. 2, pp. 442-449, Feb. 2016.
    [44] A. Massaccesi, P. Pirinoli and J. C. Vardaxoglou, "A Multilayer Unit-cell for Perforated Dielectric Transmitarray Antennas," 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2018.
    [45] A. Massaccesi and P. Pirinoli, "Enhancing the bandwidth in transmitarray antennas using tapered transmission line matching approach," 12th European Conference on Antennas and Propagation (EuCAP 2018), 2018.
    [46] 葉昭緯, 利用一維光子晶體對低吸收材料的介電性質、厚度之特性檢測與探討, 國立陽明交通大學光電工程研究所, 碩士論文, 民國96
    [47] R. G. Geyer, C. M. Weil and W. A. Kissich, "Precision dielectric measurements using a mode-filtered cylindrical cavity resonator," Conference on Precision Electromagnetic Measurements, 1990.
    [48] Y. Nikawa and Y. Guan, "Dynamic Measurement of Temperature Dependent Complex Permittivity of Material by Microwave Heating Using Cylindrical Cavity Resonator," 2007 Asia-Pacific Microwave Conference, 2007.
    [49] T. Shimizu, T. Sasaki and Y. Kogami, "Accurate and efficient measurements for complex permittivity of 3D printer filaments using a 50GHz band TM010 mode cavity resonator," 2019 IEEE Asia-Pacific Microwave Conference (APMC), 2019.
    [50] Petosa, Aldo. Dielectric resonator antenna handbook. Artech, 2007.
    [51] Q. Lai, G. Almpanis, C. Fumeaux, H. Benedickter and R. Vahldieck, "Comparison of the Radiation Efficiency for the Dielectric Resonator Antenna and the Microstrip Antenna at Ka Band," in IEEE Transactions on Antennas and Propagation, vol. 56, no. 11, pp. 3589-3592, Nov. 2008.
    [52] A. Rashidian, M. Tayfeh Aligodarz, L. Shafai and D. M. Klymyshyn, "On the Matching of Microstrip-Fed Dielectric Resonator Antennas," in IEEE Transactions on Antennas and Propagation, vol. 61, no. 10, pp. 5291-5296, Oct. 2013.
    [53] S. Sahin, N. K. Nahar and K. Sertel, "A Simplified Nicolson–Ross–Weir Method for Material Characterization Using Single-Port Measurements," in IEEE Transactions on Terahertz Science and Technology, vol. 10, no. 4, pp. 404-410, July 2020.
    [54] W. Y. Qiang, W. Yong, L. Bin, Z. Ye and D. G. Ping, "Application in Measuring the Microwave Complex Permittivity of Cylindrical Dielectric by Using a Terminal Loaded Coaxial Probe," 2007 8th International Conference on Electronic Measurement and Instruments, 2007.
    [55] C. Gulacsik, G. O. White, J. Toman and L. D. Piszker, "A free-space millimeter-wave dielectrometer for characterization of lossy materials," 1983 Eighth International Conference on Infrared and Millimeter Waves, 1983.
    [56] Galvin, Paul. Investigation of magnitude and phase errors in waveguide samples for the Nicolson-Ross-Weir permittivity technique. Diss. University of New Hampshire, 2016.
    [57] O. Luukkonen, S. I. Maslovski and S. A. Tretyakov, "A Stepwise Nicolson–Ross–Weir-Based Material Parameter Extraction Method," in IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 1295-1298, 2011.
    [58] Balanis, Constantine A. Advanced engineering electromagnetics. John Wiley & Sons, 2012.
    [59] A. Yu, F. Yang, A. Z. Elsherbeni, J. Huang, and Y. Rahmat‐Samii, “Aperture efficiency analysis of reflectarray antennas,” Microw. Opt. Technol. Lett., Vol. 52, No. 2, pp. 364–372, Feb. 2010.

    QR CODE