簡易檢索 / 詳目顯示

研究生: 曾漢偉
Han-Wei Tzeng
論文名稱: 基於RMSE最小化的一維相位干涉儀的最佳間距比與演算法比較之研究
Research on Comparison of Algorithms and Optimal Array Ratios for One-dimensional Phase Interferometer Based on Minimizing RMSE
指導教授: 張立中
Li-Chung Chang
口試委員: 劉馨勤
Hsin-Chin Liu
曾德峰
Der-Feng Tseng
張立中
Li-Chung Chang
曾恕銘
Shu-Ming Tseng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 71
中文關鍵詞: 相位干涉儀測向演算法混淆機率天線陣列RMSE
外文關鍵詞: RMSE, Phase Interferometer, Direction Finding Algorithm, Antenna Array, Probability of Ambiguity
相關次數: 點閱:348下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在電子戰的情境中,軍事載具上的電子反制設備必須要對電波源達到高靈敏度與高測向精度的效能,始能有效對抗先進的雷達裝備。而相位干涉儀演算法因為計算量低、原理簡單等緣故,常被運用於測向技術上,其藉由相鄰天線接收到的相位差,且利用不同的間距擺放方式配上演算法,估算訊號源入射來向。在一維相位干涉儀非均勻線性天線陣列系統中,若增加基線長度,可以增加估測訊號來向角的精準度,而混淆機率也會隨之上升,此時我們須在兩者之間抉擇如何得到最佳的權衡,意即最低的方均根誤差(RMSE)。我們利用數學推導的方式,整理出在不同情況下,三波道干涉儀演算法的RMSE通式,藉由此RMSE數學式,可以模擬在AWGN通道中當最大長度固定情形下,RMSE最低的其天線間最佳間距比為何者。
    此外我們整理出三個不同的演算法,依照其演算法最終判定角度的條件不同,比較其效能差異,並推導其RMSE通式,也對照使用RMSE通式與使用演算法模擬的效能,兩種結果是否一致,最後透過此RMSE通式,提出RMSE最小化的最佳間距比。


    In the context of electronic warfare, electronic counter-devices on military vehicles must achieve high sensitivity and high direction-finding accuracy for radio waves, and can effectively combat advanced radar equipment. Because of its low computational complexity and simple principle, the phase interferometer algorithm is often used in direction finding technology. Direction of the signal is estimated by the phase difference received between two antennas and uses interferometer algorithm to solve ambiguity. In the one-dimensional phase interferometer nonlinear antenna array system, If the baseline is lengthened, the accuracy of the angle of the estimated signal can be more accurate, but the probability of ambiguity will also increase. At this time, we have to choose the best trade-off to get lowest root mean square error (RMSE). We use mathematical derivation to propose an RMSE formula for algorithms. By using the RMSE formula, we can simulate and choose the optimal array ratio between the receivers in the AWGN channel.
    In addition, we choose three different algorithms according to the difference in the value of the angle of the direction. By deriving its RMSE formula and comparing its performance, we can use this RMSE formula to compare the advantages and disadvantages. Finally, the optimal array ratio of RMSE minimization is proposed by this RMSE formula.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VI 圖目錄 VII 第1章 序論 1 1.1 研究動機與目的 1 1.2 論文架構 2 第2章 干涉儀相關理論介紹 3 2.1 論文探討 3 2.2 理論介紹 4 2.2.1 相位干涉儀介紹 4 2.2.2 混淆機率 6 2.2.3 相位雜訊與AWGN雜訊之關係 11 2.2.4 AWGN在相位樣本空間中的特性 14 第3章 三種相位干涉儀演算法 18 3.1 1976原相位點作法 18 3.2 1981投影相位點作法 21 3.3 2007多相位點作法 23 第4章 RMSE最小化的最佳間距比 25 4.1 RMSEn 25 4.2 RMSEa 29 4.3 選擇最佳間距比的方式 32 第5章 模擬結果與討論 33 5.1 干涉儀演算法效能比較 33 5.2 (RMSE) ̂ 45 5.3 四波道干涉儀與其(RMSE) ̂ 61 第6章 結論與未來研究方向 66 參考文獻 67 附錄A 69 附錄B 70

    [1] P. Denisowski, A Comparison of Radio Direction-Finding Technologies, Presentation Material, Rohde and Schwarz, Archived 2012.
    [2] C. Kopp, Warsaw Pact / Russian / PLA Emitter Locating Systems / ELINT Systems, Technical Report APA-TR-2008-0503, April 2012.
    [3] 林聖淵, 洪子翔, 江政泰, 廖文照, 劉馨勤, “軟體無線電平台之跳頻訊源定向儀研製,” 第24屆國防科技研討會, 桃園、台灣, 104年11月 19日.
    [4] N. K. Peng, A correlation-based method for direction finding of multipath signals in frequency hopping systems, National University of Singapore, Thesis for The Degree of Master of Engineering, 2005.
    [5] N. Peng, C. C. Ko, and Wanjun Zhi, "Multipath signals tracking for frequency hopping systems," in 2004 IEEE Vehicular Technology Conference, 2004, pp. 84-87.
    [6] 廖文照, 劉馨勤, 張仕勳, 林紘毅, 江秉杰, “適用於多波束陣列天線的振幅比較式訊號源定向演算法,” 第20屆國防科技研討會, 桃園、台灣, 100年11月18日.
    [7] W. B. Kendall, "Unambiguous Accuracy of an Interferometer Angle-Measuring System," in IEEE Transactions on Space Electronics and Telemetry, vol. SET-11, no. 2, pp. 62-70, June 1965.
    [8] Hanson, J. E., "On resolving angle ambiguities of n-channel interferometer systems for arbitrary antenna arrangements in a plane, " Tech Report Johns Hopkins Univ. Applied Physics Lab, 1973.
    [9] E. Jacobs and E. W. Ralston, "Ambiguity Resolution in Interferometry," in IEEE Transactions on Aerospace and Electronic Systems, vol. AES-17, no. 6, pp. 766-780, Nov. 1981.
    [10] R. L. Goodwin, “Ambiguity-resistant three-and four-channel interferometers,” NRL Report 8005.Naval Research Laboratory, Washington DC, Sep. 1976.
    [11] S. Van Doan, J. Vesely, P. Janu, P. Hubacekand X. L. Tran, "Optimized algorithm for solving phase interferometer ambiguity," 2016 17th International Radar Symposium (IRS), Krakow, 2016, pp. 1-6.
    [12] S. V. Doan, J. Vesely, P. Janu, P. Hubacek and X. L. Tran, "Algorithm for obtaining high accurate phase interferometer," 2016 26th International Conference Radioelektronika (RADIOELEKTRONIKA), Kosice, 2016, pp. 433-437.
    [13] R. G. Wiley, ELINT: The Interception of Radar Signals. Norwood, MA, USA: Artech House, 1985.
    [14] 謝清淞, 陳智宏, “二維干涉儀測向技術應用,” 新新季刊, 第38卷第4期, 民99年10月, 頁84-91.
    [15] 周亞強,孫軍,李劍. 一種數學式多基線干涉儀測向方法及其性能分析[J].宇學報.2007(28):32-36.
    [16] Johnson, R.A. and Wichern, D.W., Applied Multivariate Statistical Analysis, 6th edition, Prentice Hall, 2007.
    [17] Brian Everitt, An R and S-PLUS Companion to Multivariate Analysis, Springer, London, England, 2005.

    QR CODE