簡易檢索 / 詳目顯示

研究生: 羅宇舜
Yu-Shun Luo
論文名稱: 錫硫鋰離子電容器及正負極特性之研究
Study on characteristics of positive and negative electrodes with tin-sulfide lithium ion capacitor
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 王復民
Fu-Ming Wang
葉旻鑫
Min-Hsin Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 112
中文關鍵詞: 錫硫鋰離子電容器衍生碳氧 化作用有機電解液
外文關鍵詞: tin sulfide lithium ion capacitor, derived carbon, oxidation, organic electrolyte
相關次數: 點閱:288下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

鋰離子混合電容器,透過調節正負電極之間的不同質量比例來達到電量上的平衡,然而正電極儲能的方式為電雙層相對於負極法拉第反應而言電量較為低。為了提高正極電容量,用對位-苯基苯酚高溫鍛燒製備中空多邊形結構的摻雜氮元素(KP-N-900),使活性碳表面積大於3000m 2 g -1。
透過多壁碳奈米管氧化,才能使錫與硫分布於多壁之奈米碳管上,並使用高溫熱處理可得Sn+SnS@CNT,而10.0A g-1時的電容量約103mAh g-1。
另一方面,KP-N-900的電容值在10 mV s-1下,計算出其深層擴散電容值為44.9F g-1,表面淺層電容值為37.5Fg-1。而在1 mV s-1下,其總電容值為107.1 F g-1,而深層擴散電容值為69.6Fg-1。
在KP-N-900與Sn+SnS@CNT質量比為4:1組成鋰離子混合式電容器其比能量和比功率之間表現出最好特性,與大多數單電極的特性完全不同。鋰離子混合式電容器為4:1的全電池(Full-cell)在比功率為0.15 kW kg-1時比能量為143.3 Wh kg-1,而比功率為16.9 kW kg-1時比能量為23.5Wh kg-1,另外,在穩定性方面,經過100小時維持3.8V後,電容保留率有80%。


The storage capability of lithium ion hybrid capacitor can be upgraded through adjusting the mismatched rate qualities between positive and negative electrodes, since the positive electrode of electrostatic double layer (EDL) stores and releases electricity in a lesser quantity, yet much faster than the negative battery electrode. To increase the EDL capacity, a nitrogen-doped carbon (KP-N-900) of hollow-polygon structure is prepared with para-phenylphenol, achieving a surface area above 3000 m2g-1.
MWCNT must be oxidized and coated with molten tin and sulfur on Multi-wall carbon nanotubes, Sn+SnS@CNT, evidenced by a capacity approximating 103 mAh g-1 at 10.0 A g-1.
On the other hand, The capacitance of KP-N-900 displays a diffusive component 44.9 F g-1 exceeding its capacitive counterpart at 10 mV s-1. And its total capacitance increases to 107.1 F g-1 at 1 mV s-1 with a diffusive component 69.6 F g-1.
Hence, the full cell, with a 4:1 mass ratio of KP-N-900 to Sn+SnS@CNT exhibits an effectual trade-off between its energy and power, quite different from the one-sided dependence on the carbon electrode of most hybrid capacitors. Specifically, this 4:1 full cell stores 143.3 Wh kg-1 at a power level 0.15 kW kg-1, and 23.4Wh kg-1 at power 16.9 kW kg-1. In terms of stability, after maintaining 3.8V for 100 hours, the capacity retention rate is 80%.

摘要 I ABSTRACT II 目錄 III 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1前言 1 1.2研究動機 2 第二章 文獻回顧 3 2.1電化學電容器 3 2.1.1電雙層電容器 6 2.1.2擬電容器 7 2.2鋰離子電池 8 2.3鋰離子混合式電容器 10 2.3.1鋰離子混合式電容器正極材料 11 2.3.2鋰離子混合式電容器負極材料 12 2.4電容器電解液 15 第三章 實驗方法與步驟 17 3.1實驗藥品耗材與儀器設備 17 3.1.1正、負極材料製備 17 3.1.2電測量測 19 3.1.3電化學測試儀器及設備 20 3.1.4材料鑑定及分析之儀器 20 3.2實驗流程圖 21 3.2.1負極材料合成 21 3.2.2正極材料合成 22 3.2.3負極漿料製備 23 3.2.4正極漿料製備 23 3.2.5正、負極電極製備 24 3.3實驗方法 25 3.3.1鋰離子混合式電容器負極材料合成 25 3.3.2鋰離子混合式電容器正極材料合成 26 3.3.3鋰離子混合式電容器負極漿料製備 27 3.3.4鋰離子混合式電容器正極漿料製備 27 3.3.5電極製備 27 3.4電極材料鑑定與分析 28 3.4.1場發射掃瞄式電子顯微鏡 28 3.4.2場發射槍穿透式電子顯微鏡(300kV) 28 3.4.3 D2 PHASER X光繞射儀 29 3.4.4表面積及孔徑分析 29 3.4.5化學分析電子能譜儀 32 3.5電化學特性分析 33 3.5.1循環伏安法(Cyclic Voltammetry) 33 3.5.2恆電流充放電量測(Galvanostatic Charge-Discharge) 34 第四章 結果與討論 35 4.1正極材料KP-N-900 35 4.1.1正極材料之形貌 35 4.1.2正極材料之比表面積分析 38 4.1.3正極材料之循環伏安法分析 41 4.1.4正極材料之恆電流充放電與穩定性測試 52 4.2負極材料SN+SNS@CNT 56 4.2.1負極材料之XPS分析 56 4.2.2負極材料之形貌 63 4.2.3負極材料之X光繞射儀分析 68 4.2.4預鋰化負極 70 4.2.5負極循環伏安法分析 74 4.2.6負極不同電流密度下的電容量 77 4.3鋰離子混合式電容器 80 4.3.1理論比電容量計算 80 4.3.2放電特性分析 84 4.3.3恆電流充放電及比電容量分析 86 4.3.4個別電位充放電量測分析 89 4.3.5穩定性測試 93 第五章 結論 94 參考文獻 95

1. M. Winter, R. J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chemical Reviews, 2004. 104: p. 4245-4269.
2. Shukla, A.K., et al., Electrochemical capacitors: Technical challenges and prognosis for future markets. Electrochimica Acta, 2012. 84: p. 165-173.
3. Wang, G., L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev, 2012. 41(2): p. 797-828.
4. Sharma, P. and T.S. Bhatti, A review on electrochemical double-layer capacitors. Energy Conversion and Management, 2010. 51(12): p. 2901-2912.
5. E. Frackowiak, F. Béguin, Carbon materials for the electrochemical storae of energy in capacitors, Carbon, 2001. 39: p. 937-950.
6. Candelaria, S.L., et al., Nanostructured carbon for energy storage and conversion. Nano Energy, 2012. 1(2): p. 195-220.
7. J. Ajuria, M. Arnaiz, C. Botas, D Carriazo, R Mysyk,T. Rojo, Alexandr V. T., E. Goikolea , Graphene-based lithium ion capacitor with high gravimetric energy and power densities. Journal of Power Sources, 2017. 363: p. 422-427.
8. R. Wang, S. Wang, D. Jin, Y. Zhang, Y. Cai, J. Mab, Li Zhang, Engineering layer structure of MoS2-graphene composites with robust and fast lithium storage for high-performance Li-ion capacitors, Energy Storage Materials, 2017. 9: p. 195-205.
9. K. S. Ryu, K. M. Kim, N. G. Park, Y. J. Park, S. H. Chang, Symmetric redox supercapacitor with conducting polyaniline electrodes, Journal of Power Sources, 2002. 103: p. 305-309.
10. A. Clemente, S. Panero, E. Spila, B. Scrosati, Solid-state, polymer-based, redox capacitors, Solid State Ionics, 1996. 85: p. 273-277.
11. Yu, G., et al., Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013. 2(2): p. 213-234.
12. Wei, L. and G. Yushin, Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy, 2012. 1(4): p. 552-565.
13. Reddy, M.V., G.V. Subba Rao, and B.V. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev, 2013. 113(7): p. 5364-457.
14. S. Iijima, Helical microtubules of graphitic carbon, Nature, 1991. 354: p. 56-58.
15. Q. L. Chen, K. H. Xue, W. Shen, F. F. Tao, S. Y. Yin, W. Xu, Fabrication and Electrochemical Properties of Carbon Nanotube Array Electrode for Supercapacitors, Electrochimica Acta, 2004. 24: p. 4157-4161.
16. C. Niu, E. K. Sichel, R. Hoch, D. Moy, H. Tennent, High Power Electrochemical Capacitors Based on Carbon Nanotube Electrodes, Applied Physics Letters, 1997. 70: p. 1480-1482.
17. K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee, Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes, Advanced Funtional Materials, 2001. 11: p. 387-392.
18. A. R. Kamali, D. J. Fray, Tin-based materials as advanced anode materials for lithium ion batteries: A review, Reviews on Advanced materials science, 2011. 27: p.14-24.
19. M. N. Obrovac, L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction, Electrochemical and Solid-State Letters, 2004.7: p. A93-A96.
20. M. J. Lindsay, G. X. Wang, H. K. Liu, Al-based anode materials for Li-ion batteries, Journal of Power Sources, 2003. 119-121: p. 84-87.
21. C. K. Chan, X. F. Zhang, Y. Cui, High capacity Li ion battery anodes using Ge nanowires, Nano Letters, 2008. 8: p. 307-309.
22. R. A. Huggins, Lithium alloy negative electrodes, Journal of Power Sources, 1999. 81-82: p. 13-19.
23. Xue, M.-Z. and Z.-W. Fu, Electrochemical reaction of lithium with nanostructured thin film of antimony trioxide. Electrochemistry Communications, 2006. 8(8): p. 1250-1256.
24. M. Choi, W. William, J. Hwang, D. Yoona, J. Kim, A supercritical ethanol route for one-pot synthesis of tin sulfide–reduced graphene oxides and their anode performance for lithium ion batteries, Journal of Industrial and Engineering Chemistry, 2018. 59: p. 160-168.
25. Dahbi, M., et al., Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. Journal of Power Sources, 2011. 196(22): p. 9743-9750.
26. Chen, Z., et al., LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries. Electrochimica Acta, 2006. 51(16): p. 3322-3326.
27. S. S. Zhang, Liquid electrolyte lithium/sulfur battery: Fundamental chemistry ,problems, and solutions, Journal of Power Sources, 2013. 231: p. 153-162.
28. J. Guo, X. Du, X. Zhang, F. Zhang, and J. Liu, Facile Formation of a Solid Electrolyte Interface as a Smart Blocking Layer for High-Stability Sulfur Cathode, Advanced Materials, 2017. 10: p.273-279.
29. Galiński, M., A. Lewandowski, and I. Stępniak, Ionic liquids as electrolytes. Electrochimica Acta, 2006. 51(26): p. 5567-5580.
30. 王千禎,<承載錫及硫化錫之奈米碳管電極作為鋰離子電容器之負極儲能特性 pdf.> 2018.
31. 江俊緯,<苯基苯酚前驅物製備未摻雜活性碳及其電雙層電容儲電pdf.> 2018.
32. Yan, W., et al., Lithographically Patterned Gold/Manganese Dioxide Core/Shell Nanowires for High Capacity, High Rate, and High Cyclability Hybrid Electrical Energy Storage. Chemistry of Materials, 2012. 24(12): p. 2382-2390.
33. C. Y. Wu, H. Yang, C.Y. Wu, J. G. Duh, Flower-like structure of SnS with N-doped carbon via polymer additive for lithium-ion battery and sodium-ion battery, Journal of Alloys and Compounds, 2018. 750: p. 23-32.
34. H. Li, J. Chen, B. Yang, K. Wang, X. Zhang, T. Zhang, L. Zhang, W. Liu, X. Yan, Constructing surface-driven lithium ion storage structure for high performance hybrid capacitor, Electrochimica Acta, 2019. 299: p. 163-172.
35. T. Zhang, F. Zhang, L. Zhang, Y. Lu, Y. Zhang, X. Yang, Y. Ma, Y. Huang, High energy density Li-ion capacitor assembled with all graphene-based electrodes, Carbon, 2015. 92: p. 106-118.
36. N. W. Li , X. Du , J. L. Shi , X. Zhang , W. Fan, J. Wang, S. Zhao, Y. Liu, W. Xu, M. Li , Y. G. Guo, C. Li, Graphene@hierarchical meso-/microporous carbon for ultrahighenergy density lithium-ion capacitors, 2018. 281: p. 459-465.
37. S. Dsoke, B. Fuchs, E. Gucciardi, Margret W. M., The importance of the electrode mass ratio in a Li-ion capacitor basedon activated carbon and Li4Ti5O12, Journal of Power Sources, 2015. 282: p. 385-393.
38. C. L. Hsieh, D. S. Tsai, W. W. Chiang, Y. H. Liu, A composite electrode of tin dioxide and carbon nanotubes and its role as negative electrode in lithium ion hybrid capacitor, Electrochimica Acta, 2016. 209: p. 332-340.
39. P.W. Ruch, D. Cericola, A. Foelske-Schmitz, R. Kötz, A. Wokaun, Aging of electrochemical double layer capacitors with acetonitrile-based electrolyte at elevated voltages, Electrochimica Acta, 2010. 55: p. 4412-4420.

QR CODE