簡易檢索 / 詳目顯示

研究生: 王文聖
Wen-Sheng Wang
論文名稱: 以擬似牛頓法為控制法則之高功率主動式電力濾波器
Active power filter for high power applications using Quasi-Newton's method as control strategy
指導教授: 連國龍
Kuo-Lung Lian
口試委員: 楊宗銘
Chung-Ming Young
黃仲欽
Jonq-Chin Hwang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 77
中文關鍵詞: 主動式電力濾波器靜態功因補償器擬似牛頓控制法牛頓法大功率系統
外文關鍵詞: Active Power Filter, STATCOM, Quasi Newton control, Newton control, High Power System
相關次數: 點閱:443下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

主動式電力濾波器電流控制技術至今已研發出許多不同控制方法,如:直交軸解耦合控制、滯環控制、預測電流控制等,對於傳統比例積分控制模型是假設在開關頻率極高的情況,高開關切換頻率下傳統比例積分控制方法可有效的補償,然而在大功率系統下為了減少開關切換的損失,必需運行在開關切換頻率極低的情況,將造成傳統控制手法產生明顯的穩態誤差,影響電流補償的成效。
本論文提出結合電路模型之擬似牛頓控制手法,取代傳統比例積分控制,其優勢為可操作在開關頻率極低的情況下,如此可大幅減少開關切換所產生的熱能損失,進而達到減小體積、延長元件壽命、降低維護成本與提高效率之目的。本論文透過電磁暫態分析軟體(PSCAD/EMTDC)模擬與實際硬體測試,驗證提出方法的可行性。


Many methods have been proposed in the current control systems of active power filters such as decoupled d-q frame control, hysteresis control, predictive control, etc. Traditional decoupled d-q frame control method can effectively compensate harmonic in the high switch frequency. But in order to reduce the switching power loss at low switching frequency in ultra-high power system. Traditional control method may result in significant steady-state error and affect the effectiveness of current compensation.
This thesis proposes a control method base on Quasi Newton method is more suitable to be used that in a ultra-high power system. The proposed control method can effectively compensate the current harmonic at extremely low switching frequency, which can significantly reduce the heat generated by the switching losses. Thus, it can greatly improve the system efficiency, reduce component size, and extend the component life time. The results have been both verified a by offline simulation with PSCAD/EMTDC and by experiment.

摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.3 本文主要貢獻 3 1.4 論文大綱 4 第二章 諧波與濾波器基本原理 5 2.1 諧波定義 5 2.2 電力濾波器 7 2.2.1 被動式電力濾波器 7 2.2.2 主動式濾波器 8 第三章 控制器之建置 14 3.1 電壓源換流器模型模型 14 3.2 開關函數建置 19 3.3 鎖相迴路介紹 20 3.4 牛頓法 23 3.5 擬似牛頓法 25 第四章 控制器設計與策略 28 4.1 主動式電力濾波器控制器介紹 28 4.2.1 傳統d-q軸比例積分諧波與虛功補償控制 29 4.2.2 傳統d-q軸比例積分電流控制介紹 30 4.2.3 傳統d-q軸比例積分直流電壓控制 33 4.2 擬似牛頓法之主動式電力濾波器控制方法 36 4.3.1 擬似牛頓法控制流程 37 4.3.2 初值設定 39 4.3.3 賈柯比矩陣建立 41 第五章 模擬與實驗結果 42 5.1 靜態功因補償器(STATCOM) 42 5.1.1 STATCOM之擬似牛頓法迭代 43 5.1.2 STATCOM負載變化 46 5.2 主動式電力濾波器(APF) 50 5.2.1 情境一: APF之補償結果(mf=333) 55 5.2.2 情境二: APF之補償結果(mf=27) 58 5.2.3 情境三: APF之補償結果(mf=15) 61 5.3 硬體驗證 64 5.3.1 STATCOM硬體驗證 66 5.3.2 APF硬體驗證 69 第六章 結論與未來展望 73 6.1 結論 73 6.2 未來展望 73 參考文獻 74

[1]Hingorani, N. G., “Introducing custom power,” Spectrum, IEEE, vol.32, no.6, pp.41-48, Jun. 1995.
[2]Cai, ChangQing; Wang, Liping; Yin, Guohui, “A three-phase active power filter based on park transformation,” Computer Science & Education, 2009. ICCSE '09. 4th International Conference on , vol., no., pp.1221-1224, 25-28 Jul. 2009.
[3]Jafarian, P.; Bina, M. T., “State-feedback current control of VSI-based D-STATCOM for load compensation,” Environment and Electrical Engineering (EEEIC), 2010 9th International Conference on, vol., no., pp.214-217, 16-19 May. 2010.
[4]Teodorescu, R.; Blaabjerg, F.; Liserre, M.; Loh, P. C., “Proportional-resonant controllers and filters for grid-connected voltage-source converters,” Electric Power Applications, IEE Proceedings, vol.153, no.5, pp.750-762, Sep 2006.
[5]Herman, L.; Papic, I.; Blazic, B., “A Proportional-Resonant Current Controller for Selective Harmonic Compensation in a Hybrid Active Power Filter,” Power Delivery, IEEE Transactions on, vol.29, no.5, pp.2055-2065, Oct. 2014.
[6]El-Habrouk, M.; Darwish, M. K.; Mehta, P., “Active power filters: a review,” Electric Power Applications, IEE Proceedings, vol.147, no.5, pp.403-413, Sep. 2000.
[7]Wu, B., “High-Power Converters and AC Drives,” Wiley-IEEE Press, Piscataway, NJ, 2006.
[8]Schauder, C.; Mehta, H., “Vector Analysis and Control of Advanced Static VAR Compensators,” Generation, Transmission and Distribution, IEE Proceedings C, vol.140, no.4, pp.299-306, Jul. 1993.
[9]Plunkett, A. B., “A current controlled PWM transistor inverter drive,” in Conference Record 14th Annual Meeting IEEE Industry Applications Society, pp.785-792, 1979.
[10]Kazmierkowski, M. P.; Malesani, L., “Current control techniques for three-phase voltage source PWM converters: a survey,” Industrial Electronics, IEEE Transactions on, vol.45, no.5, pp.691-703, Oct 1998.
[11]Bhattacharya, S.; Cheng, Po-Tai; Divan, D. M., “Control of square-wave inverters in high power hybrid active filter systems,” Industry Applications Conference, 1996. Thirty-First IAS Annual Meeting, IAS '96, Conference Record of the 1996 IEEE, vol.2, no., pp.1106-1113, 6-10 Oct. 1996.
[12]Lian, K. L.; Lehn, P. W., “Real-time simulation of voltage source converters based on time average method,” Power Systems, IEEE Transactions on, vol.20, no.1, pp.110-118, Feb. 2005.
[13]Wu, R.; Dewan, S. B.; Slemon, G. R., “Analysis of an AC-to-DC voltage source converter using PWM with phase and amplitude control,” Industry Applications, IEEE Transactions on, vol.27, no.2, pp.355-364, Mar/Apr. 1991.
[14]Daniyal, H.; Lam, E.; Borle, L. J.; Iu, H. H. C., “Hysteresis, PI and Ramptime Current Control Techniques for APF: An experimental comparison,” Industrial Electronics and Applications (ICIEA), 2011 6th IEEE Conference on, vol., no., pp.2151-2156, 21-23, June. 2011.
[15]Semlyen, A.; de Leon, F., “Quasi-Newton power flow using partial Jacobian updates,” Power Systems, IEEE Transactions on, vol.16, no.3, pp.332-339, Aug. 2001.
[16]Sadinezhad, I.; Agelidis, V. G., “A new quasi Newton filtering technique for power system frequency estimation and harmonics/interharmonics rejection,” Harmonics and Quality of Power (ICHQP), 2010 14th International Conference on, vol., no., pp.1-6, 26-29 Sep. 2010.
[17]Fang Zheng Peng, “Application issues of active power filters,” Industry Applications Magazine, IEEE, vol.4, no.5, pp.21-30, Sep/Oct. 1998.
[18]N. Mohan; T. M. Undeland; W. P. Robbins, “Power Electronics: Converters Application and Design, 3rd edition,” John Wiley & Sons, INC, 1995.
[19]Gonzalez, Damian A.; McCall, John C., “Design of Filters to Reduce Harmonic Distortion in Industrial Power Systems,” Industry Applications, IEEE Transactions on, vol.IA-23, no.3, pp.504-511, May. 1987.
[20]Hammond, P. W., “A harmonic filter installation to reduce voltage distortion from static power converters,” Industry Applications, IEEE Transactions on, vol.24, no.1, pp.53-58, Jan/Feb. 1988.
[21]Su, Chun-Lien; Hong, Ci-Jhang, “Design of passive harmonic filters to enhance power quality and energy efficiency in ship power systems,” Industrial & Commercial Power Systems Technical Conference (I&CPS), 2013 IEEE/IAS 49th, vol., no., pp.1-8, Apr. 30 2013-May. 3 2013.
[22]Akagi, H., “Trends in active power line conditioners,” Power Electronics, IEEE Transactions on, vol.9, no.3, pp.263-268, May. 1994.
[23]Akagi, H., “New trends in active filters for power conditioning,” IEEE Trans. Ind. Application., vol. 32, pp.1312 -1322 1996.
[24]Zhang, Shi; Li, Daheng; Wang, Xu, “Control Techniques for Active Power Filters,” Electrical and Control Engineering (ICECE), 2010 International Conference on, vol., no., pp.3493-3498, 25-27 Jun. 2010.
[25]Lehn, P. W.; Lian, K. L., “Frequency Coupling Matrix of a Voltage-Source Converter Derived From Piecewise Linear Differential Equations,” Power Delivery, IEEE Transactions on, vol.22, no.3, pp.1603-1612, Jul. 2007.
[26]Chung, Se-Kyo, “A phase tracking system for three phase utility interface inverters,” Power Electronics, IEEE Transactions on, vol.15, no.3, pp.431-438, May. 2000.
[27]Yang, Hui; Wen, Fushuan; Wang, Liping, “Newton-Raphson on power flow algorithm and Broyden Method in the distribution system,” Power and Energy Conference 2008, PEC on 2008. IEEE 2nd International, vol., no., pp.1613-1618, 1-3 Dec. 2008.
[28]Ralevic, N. M.; Cebic, D., “The properties of modifications of Newton's method for solving nonlinear equations,” Intelligent Systems and Informatics (SISY), 2013 IEEE 11th International Symposium on, vol., no., pp.341-345, 26-28 Sept 2013.
[29]R. P. Brent, “Some efficient algorithms for solving systems of nonlinear equations,” SIAM J, Numer., Anal.10, pp.327-344, 1873.
[30]K. M. Brown, “A quadratically convergent method for solving simultaneous nonlinear equations,” SIAM J, Numer., Anal.6, pp.560-569, 1969.
[31]C. G. Broyden, “A class of methods for solving nonlinear simultaneous equations,” Math, Comp, pp.577-593, 1965.
[32]C. G. Broyden; J. E. Dennis Jr; J. J. More, “On the local and superlinear convergence of quasi-Newton methods,” Math, AppZ.12, pp.223-245, 1973.
[33]D. M. Gay, “Brown’s method and some generalizations, with applications to minimization problems,” Ph. D. Diss., Cornell U. Ithaca N.Y., 1975.
[34]Sao, C. K.; Lehn, P. W.; Iravani, M. R.; Martinez, J. A., “A Benchmark System for Digital Time-Domain Simulation of a Pulse-Width-Modulated D-STATCOM,” Power Delivery, IEEE Transactions on, vol.17, no.4, pp.1113-1120, Oct. 2002.

無法下載圖示 全文公開日期 2018/06/27 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2018/06/27 (國家圖書館:臺灣博碩士論文系統)
QR CODE