簡易檢索 / 詳目顯示

研究生: 李其翰
Chi-Han Lee
論文名稱: 物聯網中 H2H、D2D 和 M2M 共存綠能通訊之波束賦形與功率分配聯合設計
Joint Beamforming and Power Allocation for Coexistence of H2H, D2D, and M2M Green Communications in IoT
指導教授: 鄭欣明
Shin-Ming Cheng
口試委員: 張佑榕
Ronald Y. Chang
沈上翔
Shan-Hsiang Shen
周詩梵
Shih-Fan Chou
林鈞陶
Chun-Tao Lin
柯拉飛
Rafael Kaliski
學位類別: 博士
Doctor
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 101
中文關鍵詞: 波束賦形功率分配物聯網綠能通訊
外文關鍵詞: Beamforming, Power allocation, IoT, Green communication
相關次數: 點閱:260下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 通信已經從人對人發展到機器對機器。緊迫的問題是傳統的通信算法只是為人對人設計的。此外,蜂窩通信作為工業4.0、無人商店和智慧城市,海量機器通信是不可避免的。蜂巢式中的大規模機器通信也導致更稀缺的頻率資源。值得注意的是,人對人和機器對機器的共存是 6G 和物聯網的關鍵問題之一。這個問題在過去的信號處理中沒有揭示出來,即針對人對人和物聯網設備的存在而進行的發射-接收波束成形設計和功率分配。
    頻寬和功率是通信領域的兩個基本問題和有限的資源。即使通信從 1G 發展到 5G 或 6G,這兩個真實問題仍然存在。因此,本論文研究了人對人和物聯網設備共存的約束優化通信問題下的信號處理技術,即頻寬和功率。我們使用凸優化和數值分析方法來處理約束優化問題,包括半定鬆弛、二階錐規劃、二階錐規劃鬆弛和不動點迭代。
    本論文將研究面向6G應用的通信和物聯網的協同設計。首先,我們將研究人對人和設備到設備的共存。其次,將討論人對人和機器對機器的共存。第三,本文研究了真實世界的場景,即人對人/設備到設備/機器對機器的共存。仿真將驗證所提出的方法適用於共存問題。此外,所提出的方法比經典的凸優化結果方法具有更低的複雜性。最後,我們在人對人和物聯網設備共存這一新話題中得出結論。


    Communication has developed from human-to-human (H2H) to machine-to-machine (M2M). The urgency problem is that the traditional communication algorithm is only designed for H2H. Moreover, massive machine communication is inevitable in cellular communication as industry 4.0, unmanned shop, and smart city. Massive machine communication in cellular also causes more scarce frequency resources. Significantly, the coexistence of H2H and M2M is one of the critical issues in the 6G and IoT. This issue is not revealed in the signal processing in the past, i.e., transmit-receive beamforming design and power allocation for the existence of H2H and IoT devices.
    Bandwidth and power are two fundamental issues and limited resources in the communication area. Even though communication develops from 1G to 5G or 6G, these two real issues still exist. Thus, this dissertation studies the signal processing techniques under the constrained optimization communication problem to coexist H2H and IoT devices, i.e., bandwidth and power. We use the convex optimization and numerical analysis methods to deal with the constrained optimization problem, including semidefinite relaxation (SDR), second-order cone programming (SOCP), SOCP relaxation, and fixed-point iteration.
    This dissertation will study the codesign of communication and IoT for 6G applications. First, we will investigate the coexistence of H2H and device-to-device (D2D). Secondly, the coexistence of H2H and M2M will be discussed. Third, the real-world scenario is studied in this dissertation, i.e., the coexistence of H2H/D2D/M2M. The simulation will verify the proposed methods suitable for the coexistence issue. Also, the proposed methods have lower complexity than the well-known convex results. Finally, we have the conclusions in this new topic of the coexistence of H2H and IoT devices.

    1 Introduction and Preliminaries 6 1.1 Fundamental issues in the codesign of communication and IoT 6 1.2 Fundamental issues in the constrained problem . . . . . . . . 9 1.2.1 Review of semidefinite relaxation (SDR) and secondorder cone programming (SOCP) processing in communication theory . . . . . . . . . . . . . . . . . . . . 9 1.2.2 Review of SOCP relaxtion processing in communication theory . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.3 Review of uplink downlink duality (UDD) processing in communication theory . . . . . . . . . . . . . . . . . 12 2 The Coexistence of H2H and D2D 16 2.1 QoS-constrained power minimization problem for the coexistence of human-to-human (H2H) and device-to-device (D2D) 16 2.1.1 The system model of the coexistence of H2H and D2D 16 2.1.2 The problem formulation of the coexistence of H2H and D2D . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.3 Algorithm for the coexistence of H2H and D2D . . . . 18 2.1.4 SOCP-based AO algorithm for the coexistence of H2H and D2D . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1.5 UDD-based AO Algorithm for the coexistence of H2H and D2D . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 Power-constrained QoS maximization problem for the coexistence of H2H and D2D . . . . . . . . . . . . . . . . . . . . . . 26 2.2.1 The system model for the power-constrained QoS maximization: MISO case . . . . . . . . . . . . . . . . . . 26 2.2.2 The problem formulation and algorithm for the power constrained QoS maximization: MISO case . . . . . . 27 2.2.3 The system model for the power constrained QoS maximization: MIMO case . . . . . . . . . . . . . . . . . . 30 2.2.4 The problem formulation and algorithm for the power constrained QoS maximization: MIMO case . . . . . . 32 3 The Coexistence of H2H and M2M 37 3.1 The system model of the coexistence of H2H and machine-tomachine (M2M) . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.1 H2H and M2M Transmission Signal Model . . . . . . . 37 3.2 The problem formulation of the coexistence of H2H and M2M 39 4 3.3 Algorithm for the coexistence of H2H and M2M . . . . . . . . 40 3.3.1 SDR-based AO algorithm for the coexistence of H2H and M2M . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3.2 SOCP-based AO algorithm for the coexistence of H2H and M2M . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.3 UDD-based AO algorithm for the coexistence of H2H and M2M . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.3.4 SDR-based energy harvesting (EH) AO algorithm for the coexistence of H2H and M2M . . . . . . . . . . . . 45 4 The Coexistence of H2H, D2D, and M2M 49 4.1 The system model of the coexistence of H2H, D2D, and M2M 49 4.1.1 H2H, D2D, and M2M Transmission Signal Model . . . 50 4.2 Algorithm for the coexistence of H2H, D2D, and M2M . . . . 53 4.2.1 SDR-based AO algorithm for the coexistence of H2H, D2D, and M2M . . . . . . . . . . . . . . . . . . . . . . 53 4.2.2 SOCP relaxation-based AO algorithm for the coexistence of H2H, D2D, and M2M . . . . . . . . . . . . . . 55 5 Simulation Results 59 5.1 The performance of coexistence of H2H and D2D . . . . . . . 59 5.2 The performance of coexistence of H2H and M2M . . . . . . . 60 5.3 The performance of coexistence of H2H, D2D, and M2M . . . 66 6 Conclusions 67 Appendices 69 A Proof of Theorem 5 69 B Proof of Theorem 6 79 C Proof of Theorem 7 81 D Proof of Theorem 8 84

    [1] S. Hussain, S. A. Hassan, R. Hussain, and E. Hossain, “Machine learning for resource management in cellular and IoT networks: Potentials,
    current solutions, and open challenges,” IEEE Commun. Surveys and
    Tutorials, vol. 22, no. 2, pp. 1251–1275, Second Quarter 2020.
    [2] S. K. Sharma and X. Wang, “Toward massive machine type communications in ultra-dense cellular IoT networks: Current issues and machine
    learning-assisted solutions,” IEEE Commun. Surveys Tuts., vol. 22,
    no. 1, pp. 426–471, 1st Quart. 2020.
    [3] L. Liu et al., “Sparse signal processing for grant-free massive connectivity: A future paradigm for random access protocols in the Internet
    of Things,” IEEE Signal Process. Mag., vol. 35, no. 5, pp. 88–99, Sep.
    2018.
    [4] M. Elbayoumi, M. Kamel, W. Hamouda, and A. Youssef, “NOMAassisted machine-type communications in UDN: State-of-the-art and
    challenges,” IEEE Commun. Surveys Tuts., vol. 22, no. 2, pp. 1276–
    1304, 2nd Quart. 2020.
    [5] S. Vitturi, C. Zunino, and T. Sauter, “Industrial communication systems
    and their future challenges: Next-generation ethernet, IIoT, and 5G,”
    Proc. IEEE, vol. 107, no. 6, pp. 944–961, Jun. 2019.
    [6] K.-C. Chen, S.-C. Lin, J.-H. Hsiao, C.-H. Liu, A. F. Molisch, and G. P.
    Fettweis, “Wireless networked multirobot systems in smart factories,”
    Proc. IEEE, vol. 109, no. 4, pp. 468–494, Apr. 2021.
    [7] S. Chen, R. Ma, H.-H. Chen, H. Zhang, W. Meng, and J. Liu, “Machineto-machine communications in ultra-dense networks—A survey,” IEEE
    Commun. Surveys Tuts., vol. 19, no. 3, pp. 1478–1503, 3rd Quart. 2017.
    [8] R. Su, D. Zhang, R. Venkatesan, Z. Gong, C. Li, F. Ding, F. Jiang,
    and Z. Zhu, “Resource allocation for network slicing in 5G telecommunication networks: A survey of principles and models,” IEEE Network,
    vol. 33, no. 6, pp. 172–179, Nov. 2019.
    [9] C.-H. Lee, R. Y. Chang, C.-T. Lin, and S.-M. Cheng, “Energy-efficient
    D2D underlaid MIMO cellular networks with energy harvesting,” in
    Proc. IEEE GLOBECOM, Dec. 2018.
    [10] C.-H. Lee, R. Y. Chang, S.-M. Cheng, C.-H. Lin, and C.-H. Hsiao, “Joint
    beamforming and power allocation for M2M/H2H co-existence in green
    dynamic TDD networks: Low-complexity optimal designs,” to appear
    in IEEE Internet Things J.
    [11] S. K. Nobar, M. H. Ahmed, Y. Morgan, and S. A. Mahmoud, “Uplink resource allocation in energy harvesting cellular network with H2H/M2M
    coexistence,” IEEE Trans. Wireless Commun., vol. 19, no. 8, pp. 5101–
    5116, Aug. 2020.
    [12] A. B. Gershman, N. D. Sidiropoulos, S. Shahbazpanahi, M. Bengtsson,
    and B. Ottersten, “Convex optimization based beamforming,” IEEE Signal Process. Mag., vol. 27, no. 3, pp. 62–75, May 2010.
    [13] S. Chen, S. Sun, G. Xu, X. Su, and Y. Cai, “Beam-space multiplexing:
    Practice, theory, and trends, from 4G TD-LTE, 5G, to 6G and beyond,”
    IEEE Wireless Commun., vol. 27, no. 2, p. 162–172, Apr. 2020.
    [14] J. Chen, S. Li, J. Tao, S. Fu, and G. E. Sobelman, “Wireless beam modulation: An energy- and spectrum-efficient communication technology for
    future massive IoT systems,” IEEE Wireless Commun., vol. 27, no. 5,
    p. 60–66, Oct. 2020.
    [15] C.-H. Lee, R. Y. Chang, C.-T. Lin, and S.-M. Cheng, “Sum-rate maximization for energy harvesting-aided D2D communications underlaid
    cellular networks,” in Proc. IEEE Personal, Indoor, and Mobile Radio
    Communications (PIMRC), Oct. 2017.
    [16] P. Jayasinghe, A. Tölli, J. Kaleva, and M. Latva-aho, “Bi-directional
    beamformer training for dynamic TDD networks,” IEEE Trans. Signal
    Process., vol. 66, no. 23, pp. 6252–6267, Dec. 2018.
    [17] E. de O. Cavalcante, G. Fodor, Y. C. B. Silva, and W. C. Freitas,
    “Bidirectional sum-power minimization beamforming in dynamic TDD
    MIMO networks,” IEEE Trans. Veh. Technol., vol. 68, no. 10, pp. 9988–
    10 002, Oct. 2019.
    [18] A. Łukowa and V. Venkatasubramanian, “Centralized UL/DL resource
    allocation for flexible TDD systems with interference cancellation,”
    IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2443–2458, Mar. 2019.
    [19] X. Wang, A. Ashikhmin, and X. Wang, “Wirelessly powered cell-free
    IoT: Analysis and optimization,” IEEE Internet Things J., vol. 7, no. 9,
    pp. 8384–8396, Sep. 2020.
    [20] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite
    relaxation of quadratic optimization problems,” IEEE Signal Process.
    Mag., vol. 27, no. 3, pp. 20–34, May 2010.
    [21] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
    [22] M. Grant and S. Boyd. (2009, Jun.) CVX: Matlab software
    for disciplined convex programming. [Online]. Available: http:
    //cvxr.com/cvx/
    [23] Q. Shi, W. Xu, T.-H. Chang, Y. Wang, and E. Song, “Joint beamforming and power splitting for MISO interference channel with SWIPT:
    An SOCP relaxation and decentralized algorithm,” IEEE Trans. Signal
    Process., vol. 62, no. 23, pp. 6194–6208, Dec. 2014.
    [24] C.-H. Lee, R. Y. Chang, and S.-M. Cheng, “Beamforming and power allocation in dynamic TDD based H2H/M2M networks with energy harvesting,” in Proc. IEEE PIMRC, Aug. 2020.
    [25] F. Rashid-Farrokhi, K. J. R. Liu, and L. Tassiulas, “Transmit beamforming and power control for cellular wireless systems,” IEEE J. Sel.
    Areas Commun., vol. 16, no. 8, pp. 1437–1450, Oct. 1998.
    [26] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming.
    Springer Press, 2021.
    [27] W. Yu and T. Lan, “Transmitter optimization for the multi-antenna
    downlink with per-antenna power constraints,” IEEE Trans. Signal Process., vol. 55, no. 6, pp. 2646–2660, Jun. 2007.
    [28] C.-H. Lee, T.-H. Chang, and S.-C. Lin, “Transmit-receive beamforming
    optimization for full-duplex cloud radio access networks,” in Proc. IEEE
    GLOBECOM, Dec. 2016.
    [29] C.-H. Lee, R. Y. Chang, C.-T. Lin, and S.-M. Cheng, “Beamforming
    and power allocation in dynamic TDD networks supporting machinetype communication,” in Proc. IEEE Int. Conf. Commun. (ICC), Jun.
    2020.
    [30] X. Kuai, X. Yuan, W. Yan, and Y.-C. Liang, “Coexistence of humantype and machine-type communications in uplink massive MIMO,”
    IEEE Journal on Selected Areas in Communications, vol. 39, no. 3,
    pp. 804–819, Mar. 2021.
    [31] A. Y. Awan, M. Ali, M. Naeem, F. Qamar, and M. N. Sial, “Joint
    network admission control, mode assignment, and power allocation in
    energy harvesting aided D2D communication,” IEEE Trans. Ind. Informat., vol. 16, no. 3, pp. 1914–1923, Mar. 2020.
    [32] Q. Qi, X. Chen, and D. W. K. Ng, “Robust beamforming for NOMAbased cellular massive IoT with SWIPT,” IEEE Trans. Signal Process.,
    vol. 68, pp. 211–224, Jan. 2020.
    [33] Z. Zhu, N. Wang, W. Hao, Z. Wang, and I. Lee, “Robust beamforming
    designs in secure MIMO SWIPT IoT networks with a nonlinear channel
    model,” IEEE Internet Things J., vol. 8, no. 3, pp. 1702–1715, Feb.
    2021.
    [34] S. N. Swain, R. Thakur, and S. R. M. Chebiyyam, “Coverage and rate
    analysis for facilitating machine-to-machine communication in LTE-A
    networks using device-to-device communication,” IEEE Trans. Mobile
    Computing, vol. 16, no. 11, pp. 3014–3027, Nov. 2017.
    [35] M. S. Khan et al., “EPS-TRA: Energy efficient peer selection and time
    switching ratio allocation for SWIPT-enabled D2D communication,”
    IEEE Trans. Sustain. Comput., vol. 5, no. 3, pp. 428–437, Jul. 2020.
    [36] D. K. P. Asiedu, S. Mahama, C. Song, D. Kim, and K.-J. Lee,
    “Beamforming and resource allocation for multiuser full-duplex wirelesspowered communications in IoT networks,” IEEE Internet Things J.,
    vol. 7, no. 12, pp. 11 355–11 370, Dec. 2020.
    [37] M. M. Salim, D. Wang, H. A. E. A. Elsayed, Y. Liu, and M. A. Elaziz,
    “Joint optimization of energy-harvesting-powered two-way relaying D2D
    communication for IoT: A rate–energy efficiency tradeoff,” IEEE Internet Things J., vol. 7, no. 12, pp. 11 735–11 752, Dec. 2020.
    [38] Y. Ma, T. Liu, Z. Li, X. Yin, and Q. Liu, “Robust resource allocation
    with power outage guarantees for energy harvesting aided device-todevice communication,” IEEE Access, vol. 8, pp. 124 563–124 578, 2020.
    [39] J. Mirza, G. Zheng, K.-K. Wong, and S. Saleem, “Joint beamforming
    and power optimization for D2D underlaying cellular networks,” IEEE
    Trans. Veh. Technol., vol. 67, no. 9, pp. 8324–8335, Sep. 2018.
    [40] J. Lin, Q. Shi, Q. Li, and D. Zhao, “Joint mode selection and
    transceiver design for device-to-device communications underlaying multi-user MIMO cellular networks,” IEEE Trans. Wireless Commun., vol. 18, no. 6, pp. 3312–3328, Jun. 2019.
    [41] K. Shen, W. Yu, L. Zhao, and D. P. Palomar, “Optimization of
    MIMO device-to-device networks via matrix fractional programming:
    A minorization-maximization approach,” IEEE/ACM Trans. Netw.,
    vol. 27, no. 5, pp. 2164–2177, Oct. 2019.
    [42] R. Atat, L. Liu, N. Mastronarde, and Y. Yi, “Energy harvesting-based
    D2D-assisted machine-type communications,” IEEE Trans. Commun.,
    vol. 65, no. 3, pp. 1289–1302, Mar. 2017.
    [43] S. Zhang, H. Zhang, and L. Song, “Beyond D2D full dimension UAV-toeverything communications in 6G,” IEEE Trans. Veh. Technol., vol. 69,
    no. 6, pp. 6592–6602, Jun. 2020.
    [44] Y. Yang, Y. Zhang, L. Dai, J. Li, S. Mumtaz, and J. Rodriguez,
    “Transmission capacity analysis of relay-assisted device-to-device overlay/underlay communication,” IEEE Trans. Ind. Informat., vol. 13,
    no. 1, pp. 380–389, Feb. 2017.
    [45] W. Sun, J. Liu, Y. Yue, and Y. Jiang, “Social-aware incentive mechanisms for D2D resource sharing in IIoT,” IEEE Trans. Ind. Informat.,
    vol. 16, no. 8, pp. 5517–5526, Aug. 2020.
    [46] C. Kai, H. Li, L. Xu, Y. Li, and T. Jiang, “Energy-efficient device-todevice communications for green smart cities,” IEEE Trans. Ind. Informat., vol. 14, no. 4, pp. 1542–1551, Apr. 2018.
    [47] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device
    communication in cellular networks,” IEEE Commun. Surveys Tuts.,
    vol. 16, no. 4, pp. 1801–1819, 4th Quart. 2014.
    [48] X. Lin, J. G. Andrews, A. Ghosh, and R. Ratasuk, “An overview
    of 3GPP device-to-device proximity services,” IEEE Commun Mag.,
    vol. 52, no. 4, pp. 40–48, Apr. 2014.
    [49] Y. Liu, L. Wang, S. A. R. Zaidi, M. Elkashlan, and T. Q. Duong, “Secure D2D communication in large scale cognitive cellular networks: A
    wireless power transfer model,” IEEE Trans. Commun., vol. 64, no. 1,
    pp. 329–342, Jan. 2016.
    [50] Y. Ni, S. Jin, W. Xu, Y. Wang, M. Matthaiou, and H. Zhu, “Beamforming and interference cancellation for device-to-device communication underlaying cellular networks,” IEEE Trans. Commun., vol. 64,
    no. 2, pp. 832–846, Feb. 2016.
    [51] S. Gupta, R. Zhang, and L. Hanzo, “Energy harvesting aided device-todevice communication underlaying the cellular downlink,” IEEE Access,
    vol. 5, pp. 7405–7413, Jun. 2017.
    [52] D. Zhu, J. W. A. L. Swindlehurst, and C. Zhao, “Downlink resource
    reuse for device-to-device communications underlaying cellular networks,” IEEE Signal Processing. Lett., vol. 21, no. 5, pp. 531–534, May
    2014.
    [53] M. Schubert and H. Boche, “Solution of the multiuser downlink beamforming problem with individual SINR constraints,” IEEE Trans. Veh.
    Technol., vol. 53, no. 1, pp. 18–28, Jan. 2004.
    [54] R. Yates, “A framework for uplink power control in cellular radio systems,” IEEE J. Sel. Areas Commun., vol. 13, no. 7, pp. 1341–1347, Sep.
    1995.
    [55] D. Nguyen, L.-N. Tran, P. Pirinen, and M. Latva-aho, “On the spectral efficiency of full-duplex small cell wireless systems,” IEEE Trans.
    Wireless Commun., vol. 13, no. 9, pp. 4896–4910, Sep. 2014.
    [56] S. Huberman and T. Le-Ngoc, “Full-duplex MIMO precoding for sumrate maximization with sequential convex programming,” IEEE Trans.
    Veh. Technol., vol. 64, no. 11, pp. 5103–5112, Nov. 2015.
    [57] A. L. Yuille and A. Rangarajan, “The concave-convex procedure
    (CCCP),” in Proc. Adv. Neural Inf. Process. Syst., pp. 1033–1040, 2001.
    [58] K. Shen and W. Yu, “Fractional programming for communication
    systems-part I: Power control and beamforming,” IEEE Trans. Signal
    Process., vol. 66, no. 10, pp. 2616–2630, May 2018.
    [59] W. Dinkelbach, “On nonlinear fractional programming,” Bulletin of the
    Australian Mathematical Society, vol. 13, pp. 492–498, Mar. 1967.
    [60] C. Isheden, Z. Chong, E. Jorswieck, and G. Fettweis, “Framework for
    link-level energy efficiency optimization with informed transmitter,”
    IEEE Trans. Wireless Commun., vol. 11, no. 8, pp. 2946–2957, Aug.
    2012.
    [61] Z. Zhou, M. Dong, K. Ota, J. Wu, and T. Sato, “Energy efficiency and
    spectral efficiency tradeoff in device-to-device (D2D) communications,”
    IEEE Wireless Commun. Lett., vol. 3, no. 5, pp. 485–488, Oct. 2014.
    [62] F. Boccardi, J. Andrews, H. Elshaer, M. Dohler, S. Parkvall,
    P. Popovski, and S. Singh, “Why to decouple the uplink and downlink
    in cellular networks and how to do it,” IEEE Commun. Mag., vol. 54,
    no. 3, pp. 110–117, Mar. 2016.
    [63] H. Kim, J. Kim, and D. Hong, “Dynamic TDD systems for 5G and
    beyond: A survey of cross-link interference mitigation,” IEEE Commun.
    Surveys Tuts., vol. 22, no. 4, pp. 2315–2348, 4th Quart. 2020.
    [64] 3GPP TR 36.828 v11.0.0, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Further Enhancements
    to LTE TDD for DL-UL Interference Management and Traffic Adaptation (Release 11) Jun. 2012.
    [65] B. Yu, L. Yang, H. Ishii, and S. Mukherjee, “Dynamic TDD support
    in macrocell-assisted small cell architecture,” IEEE J. Sel. Areas Commun., vol. 33, no. 6, pp. 1201–1213, Jun. 2015.
    [66] Y. Huang, B. Jalaian, S. Russell, and H. Samani, “Reaping the benefits
    of dynamic TDD in massive MIMO,” IEEE Systems J., vol. 13, no. 1,
    pp. 117–124, Mar. 2019.
    [67] D. D. Penda, L. Fu, and M. Johansson, “Energy efficient D2D communications in dynamic TDD systems,” IEEE Trans. Commun., vol. 65,
    no. 3, pp. 1260–1273, Mar. 2017.
    [68] N. Alhussien and T. A. Gulliver, “Optimal resource allocation in cellular networks with H2H/M2M coexistence,” IEEE Trans. Veh. Technol.,
    vol. 69, no. 11, pp. 12 951–12 962, Nov. 2020.
    [69] H. Pirayesh, P. K. Sangdeh, and H. Zeng, “Coexistence of Wi-Fi and
    IoT communications in WLANs,” IEEE Internet Things J., vol. 7, no. 8,
    pp. 7495–7505, Aug. 2020.
    [70] A. Aijaz, M. Tshangini, M. R. Nakhai, X. Chu, and A.-H. Aghvami, “Energy-efficient uplink resource allocation in LTE networks with
    M2M/H2H co-existence under statistical QoS guarantees,” IEEE Trans.
    Commun., vol. 62, no. 7, pp. 2353–2365, Jul. 2014.
    [71] V. Mancuso, P. Castagno, M. Sereno, and M. A. Marsan, “Modeling
    MTC and HTC radio access in a sliced 5G base station,” IEEE Trans.
    Netw. Service Manag., vol. 18, no. 2, pp. 2208–2225, Jan. 2021.
    [72] L. Zhang, R. Zhang, Y. C. Liang, Y. Xin, and H. V. Poor, “On gaussian
    MIMO BC-MAC duality with multiple transmit covariance constraints,”
    IEEE Trans. Inform. Theory, vol. 58, no. 4, pp. 2064–2078, Apr. 2012.
    [73] P. Viswanath and D. N. C. Tse, “Sum capacity of the vector gaussian
    broadcast channel and uplink–downlink duality,” IEEE Trans. Inform.
    Theory, vol. 49, no. 8, pp. 1912–1921, Aug. 2003.
    [74] L. Liu, Y.-F. Liu, P. Patil, and W. Yu, “Uplink-downlink duality between multiple-access and broadcast channels with compressing relays,”
    IEEE Trans. Inform. Theory, vol. 67, no. 11, pp. 7304–7337, Nov. 2021.
    [75] K.-Y. Wang, A. M.-C. So, T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “Outage constrained robust transmit optimization for multiuser MISO downlinks: Tractable approximations by conic optimization,” IEEE Trans.
    Signal Process., vol. 62, no. 21, pp. 5690–5705, Nov. 2014.
    [76] Q. Shi, M. Razaviyayn, M. Hong, and Z.-Q. Luo, “SINR constrained
    beamforming for a MIMO multi-user downlink system: Algorithms and
    convergence analysis,” IEEE Trans. Signal Process., vol. 64, no. 11, pp.
    2920–2933, Jun. 2016.
    [77] B. Clerckx et al., “Fundamentals of wireless information and power
    transfer: From RF energy harvester models to signal and system designs,” IEEE J. Sel. Areas Commun., vol. 37, no. 1, pp. 4–33, Jan.
    2019.
    [78] Y. Zeng, B. Clerckx, and R. Zhang, “Communications and signals design
    for wireless power transmission,” IEEE Trans. Commun., vol. 65, no. 5,
    pp. 2264–2290, May 2017.
    [79] M.-M. Zhao, Q. Shi, Y. Cai, and M.-J. Zhao, “Joint transceiver design
    for full-duplex cloud radio access networks with SWIPT,” IEEE Trans.
    Wireless Commun., vol. 16, no. 9, pp. 5644–5658, Sep. 2017.
    [80] S. Goyal, P. Liu, and S. S. Panwar, “User selection and power allocation
    in full-duplex multicell networks,” IEEE Trans. Veh. Technol., vol. 66,
    no. 3, pp. 2408–2422, Mar. 2017.
    [81] A. Wiesel, Y. C. Eldar, and S. Shamai (Shitz), “Linear precoding via
    conic optimization for fixed MIMO receivers,” IEEE Trans. Signal Process., vol. 54, no. 1, pp. 161–176, Jan. 2006.

    無法下載圖示 全文公開日期 2032/04/19 (校內網路)
    全文公開日期 2120/04/19 (校外網路)
    全文公開日期 2120/04/19 (國家圖書館:臺灣博碩士論文系統)
    QR CODE