簡易檢索 / 詳目顯示

研究生: 黃鈞臨
Chun-Lin Huang
論文名稱: 基於多角度平面波成像之發射角度域最小方差估計結合自適應延遲相乘加總的超音波新型波束形成法
A Novel Adaptive Ultrasound Beamforming by Combining Delay-Multiply-and-Sum with Transmit Minimum-Variance Estimation in Multi-Angle Plane-Wave Imaging
指導教授: 沈哲州
Che-Chou Shen
口試委員: 李百祺
Pai-Chi Li
謝寶育
Bao-Yu Hsieh
廖愛禾
Ai-Ho Liao
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 85
中文關鍵詞: PW成像空間同調性DMAS成像MV成像ADMAS成像
外文關鍵詞: Plane-wave imaging, Signal coherence, Delay-multiply-and-sum, Minimum Variance, adaptive Delay-multiply-and-sum
相關次數: 點閱:227下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在多角度平面波(PW) 成像中,多角度PW同調複合成像是基於傳統延遲加總成像的作法,因此對影像品質的改善有限。延遲相乘加總成像(Delay Multiply And Sum, DMAS) 透過將空間同調性引入到成像過程來改善影像的解析度與對比度,然而過多的空間同調性會影響斑點品質,導致對比雜訊比下降,本研究把最小方差法(Minimum Variance, MV) 與DMAS結合,目的是提高影像解析度並保持一定的斑點品質。首先,使用PICMUS的模擬資料集確定最佳的MV成像方式後再與DMAS結合,在最後選定的TxMV-DMAS成像中,所有可用的PW角度各自複合低解析度影像以形成發射角度向量,在保持相位的同時對該向量開p次根號,接著估計MV權重後將輸出進行p次方以導入空間同調性提高影像品質。我們還開發了自適應的DMAS成像(Adaptive DMAS, ADMAS)以維持背景斑點品質,ADMAS會基於發射角度向量的空間同調性與變異數選擇每個影像像素的p值。以PICMUS實驗資料集的測試結果顯示TxMV-DMAS成像明顯提高了影像解析度,以p固定為2.5為例,主瓣從多角度PW同調複合成像成像的0.57 mm縮小到0.21 mm而影像對比度也從-27.0 dB提升至-42.1 dB,但對比雜訊比卻從12.8下降到10.9,若使用ADMAS方法則能夠在保持相當影像解析度和對比度的情況下維持對比雜訊比。


    For multi-angle plane-wave (PW) imaging, coherent PW compounding (CPWC) method provides limited image quality because of its conventional Delay-and-Sum (DAS) beamforming. Delay-Multiply-and-Sum (DMAS) beamforming has been used to improve image resolution and contrast by introducing signal coherence into the image output. Nonetheless, excessive signal coherence may compromise the speckle quality and thus degrade the contrast-to-noise ratio (CNR). In this study, minimum-variance (MV) estimation is combined with DMAS beamforming to increase the image resolution while the background speckle quality is better maintained. First, the optimal MV estimation method is determined for multi-angle PW imaging and then subsequently integrated with DMAS algorithm. In the proposed TxMV-DMAS beamforming, low-resolution images are firstly constructed for all available PW transmit angles to generate the transmit vector. After magnitude-scaling the transmit vector by p-th root while maintaining the phase, the MV weighting is estimated for each image pixel and the high-resolution image is produced with p-th power of its magnitude to introduce the signal coherence. Moreover, adaptive DMAS (ADMAS) is developed to keep speckle quality. It selects the appropriate p value for each image pixel based on the coherence and variance of transmit vector. Our results show that, using the PICMUS dataset, TxMV-DMAS beamforming significantly improves the image resolution compared to CPWC. When the p value is fixed to 2.5 as an example, the main-lobe width in the experiments reduces from 0.57 mm in CPWC to 0.21 mm in TxMV-DMAS. Meanwhile, the image contrast improves from -27.0 dB in CPWC to -42.1 dB in TxMV-DMAS. Nonetheless, the corresponding CNR decreases from 12.8 to 10.9 due to the degraded speckle quality. With ADMAS algorithm, however, the adaptive p value helps to maintain the CNR with comparable image resolution and contrast.

    摘要 I ABSTRACT IV 誌謝 VI 目錄 VII 圖目錄 IX 表目錄 XI 一、 緒論 1 1.1 醫用超音波成像原理 1 1.2 發射聚焦成像 3 1.3 平面波發射成像 4 1.4 研究動機與目的 6 1.5 論文架構 7 二、 文獻回顧 8 2.1 平面波同調複合成像 (CPWC) 8 2.2 延遲相乘加總 (Delay Multiply and Sum) 10 2.3 最小方差法 (Minimum Variance) 12 2.4 同調因子 17 三、 研究原理與方法 19 3.1 RxMV 成像 19 3.2 TxMV 成像 21 3.3 TxMV-DMAS 成像 23 3.4 ADMAS 算法 25 3.5 模擬及實驗方法 33 四、 研究結果 36 4.1 未結合DMAS的MV Beamformer 36 4.2 結合DMAS的MV Beamformer 40 4.2.1 模擬結果 40 4.2.2 實驗結果 46 4.2.3 體內實驗 51 五、 討論與結論 54 5.1 討論與結論 54 5.2 未來工作 58 5.2.1 平面波發射數量減少之情形 58 5.2.2 不同反射強度囊腫之情形 63

    [1] 沈哲州, “醫用超音波上課講義,” 國立台灣科技大學電機所, 110.
    [2] 謝佩穎, “基於基頻延遲相乘加總(BB-DMAS)之非線性波束形成器,” 國立台灣科技大學電機工程系碩士學位論文, 108.
    [3] L. Sandrin, S. Catheline, M. Tanter et al., “Time-resolved pulsed elastography with ultrafast ultrasonic imaging,” Ultrason Imaging, vol. 21, no. 4, pp. 259-72, 1999.
    [4] M. Tanter, and M. Fink, “Ultrafast imaging in biomedical ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 61, no. 1, pp. 102-19, 2014.
    [5] G. Montaldo, M. Tanter, J. Bercoff et al., “Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 56, no. 3, pp. 489-506, 2009.
    [6] C.-C. Shen, “Computationally efficient minimum-variance baseband delay-multiply-and-sum beamforming for adjustable enhancement of ultrasound image resolution,” Ultrasonics, vol. 112, pp. 106345, 2021.
    [7] F. Prieur, O. M. H. Rindal, and A. Austeng, “Signal coherence and image amplitude with the filtered delay multiply and sum beamformer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 65, no. 7, pp. 1133-1140, 2018.
    [8] O. M. H. Rindal, A. Rodriguez-Molares, and A. Austeng, “The dark region artifact in adaptive ultrasound beamforming,” Proc. IEEE Int. Ultrason. Symp. (IUS), pp. 1-4, 2017.
    [9] G. Matrone, A. S. Savoia, G. Caliano et al., “The delay multiply and sum beamforming algorithm in ultrasound B-mode medical imaging,” IEEE Transactions on Medical Imaging, vol. 34, no. 4, pp. 940-949, 2015.
    [10] G. Matrone, and A. Ramalli, "Spatial coherence of backscattered signals in multi-line transmit ultrasound imaging and its effect on short-lag filtered-delay multiply and sum beamforming," Appl. Sci., 8, 2018.
    [11] C.-C. Shen, and P.-Y. Hsieh, “Ultrasound baseband delay-multiply-and-sum (BB-DMAS) nonlinear beamforming,” Ultrasonics, vol. 96, pp. 165-174, 2019.
    [12] C.-C. Shen, and P.-Y. Hsieh, "Two-dimensional spatial coherence for ultrasonic dmas beamforming in multi-angle plane-wave imaging," Appl. Sci., 9, 2019.
    [13] G. Matrone, A. S. Savoia, G. Caliano et al., "Ultrasound plane-wave imaging with delay multiply and sum beamforming and coherent compounding." pp. 3223-3226.
    [14] J. K. D. Go, Y. Yoo, “A new compounding method for high contrast ultrafast ultrasound imaging based on delay multiply and sum,” Proc. IEEE Int. Ultrason. Symp. (IUS), pp. 3223-3226, 2018.
    [15] J. F. Synnevag, A. Austeng, and S. Holm, “Adaptive beamforming applied to medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 54, no. 8, pp. 1606-1613, 2007.
    [16] J. f. Synnevag, A. Austeng, and S. Holm, “Benefits of minimum-variance beamforming in medical ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 56, no. 9, pp. 1868-1879, 2009.
    [17] C. I. C. Nilsen, and I. Hafizovic, “Beamspace adaptive beamforming for ultrasound imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 56, no. 10, pp. 2187-2197, 2009.
    [18] J. Zhao, Y. Wang, X. Zeng et al., “Plane wave compounding based on a joint transmitting-receiving adaptive beamformer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 62, no. 8, pp. 1440-1452, 2015.
    [19] N. Q. Nguyen, and R. W. Prager, “A spatial coherence approach to minimum variance beamforming for plane-wave compounding,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 65, no. 4, pp. 522-534, 2018.
    [20] O. M. H. Rindal, and A. Austeng, “Double adaptive plane-wave imaging,” Proc. IEEE Int. Ultrason. Symp. (IUS), pp. 1-4, 2016.
    [21] S. L. Wang, and P. C. Li, “MVDR-based coherence weighting for high-frame-rate adaptive imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 56, no. 10, pp. 2097-110, 2009.
    [22] X. Zeng, C. Chen, and Y. Wang, “Eigenspace-based minimum variance beamformer combined with Wiener postfilter for medical ultrasound imaging,” Ultrasonics, vol. 52, no. 8, pp. 996-1004, 2012.
    [23] Y. Qi, Y. Wang, and W. Guo, “Joint subarray coherence and minimum variance beamformer for multitransmission ultrasound imaging modalities,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 65, no. 9, pp. 1600-1617, 2018.
    [24] K. W. Hollman, K. W. Rigby, and M. O. Donnell, “Coherence factor of speckle from a multi-row probe,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 2, pp. 1257-1260 vol.2, 1999.
    [25] P. C. Li, and M. L. Li, “Adaptive imaging using the generalized coherence factor,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 50, no. 2, pp. 128-41, 2003.
    [26] M. A. Lediju, G. E. Trahey, B. C. Byram et al., “Short-lag spatial coherence of backscattered echoes: imaging characteristics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 58, no. 7, pp. 1377-88, 2011.
    [27] G. Pinton, G. Trahey, and J. Dahl, “Spatial coherence in human tissue: implications for imaging and measurement,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 61, no. 12, pp. 1976-87, 2014.
    [28] H. Liebgott, A. Rodriguez-Molares, F. Cervenansky et al., “Plane-wave imaging challenge in medical ultrasound,” Proc. IEEE Int. Ultrason. Symp. (IUS), pp. 1-4, 2016.
    [29] A. Rodriguez-Molares, O. M. H. Rindal, J. D'Hooge et al., “The generalized contrast-to-noise ratio: a formal definition for lesion detectability,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 67, no. 4, pp. 745-759, Apr, 2020.
    [30] C.-I. C. Nilsen, and S. Holm, “Speckle statistics in adaptive beamforming,” Proc. IEEE Int. Ultrason. Symp. (IUS), pp. 1545-1548, 2007.
    [31] M. S. Ziksari, and B. M. Asl, “Minimum variance combined with modified delay multiply-and-sum beamforming for plane-wave compounding,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control., vol. 68, no. 5, pp. 1641-1652, 2021.

    QR CODE