簡易檢索 / 詳目顯示

研究生: 游主依
Chu-Yi Yu
論文名稱: 以光引導富含甘胺酸及丙胺酸之探針形成類澱粉纖維,並以超解析影像觀測
Glycine-Alanine dipeptide repeat containing probe enables superresolution imaging of light-induced amyloid fiber formation
指導教授: 黃人則
Jen-Tse Huang
口試委員: 廖仲麒
Jung-Chi Liao
何明樺
Ming-Hua Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 110
中文關鍵詞: 重複雙胜肽光控探針超解析影像類澱粉纖維
外文關鍵詞: dipeptide, superresolution imaging, light-induced, amyloid fiber
相關次數: 點閱:222下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來許多證據指出漸凍人症上C9orf72基因的重要性。其中一種由突變C9orf72基因轉譯之重複雙胜肽 (dipeptide repeats, DPRs) , 多甘胺酸-丙胺酸 (poly glycine-alanine, poly-GA) 具類澱粉性質 (amyloidogenic) 且可能造成細胞核質運輸缺陷 (nucleo-cytosol shuttling defect) ,然而其相關病理機轉尚不明瞭。有鑑於此,本研究設計將poly-GA與細胞穿膜序列 [多精胺酸 (arginine, R) 或賴胺酸 (lysine, K) ] 以硝基苯為主之非天然光裂解胺基酸連結,以合成可光控形成類澱粉纖維之胜肽 [C(GA)12-PL-K8、C(GA)12-PL-R8] 。透過紫外光使胜肽光解,(GA)12部份即啟動類澱粉聚集。本研究藉由硫磺素T (Thioflavin T, ThT) 螢光染劑染色;穿透式電子顯微術 (TEM) 觀察其結構的變化;以及比較其混濁度之差異以了解胜肽之光控性質。另外,將胜肽接上螢光基團 (Alexa flour 488)並藉由隨機光學重建顯微術 (stochastic optical reconstruction microscopy, STORM) 直接觀察 (GA)12 形成之纖維。在細胞實驗中,發現光裂解之poly-GA片段可聚集細胞質中的TDP-43蛋白。再者,STORM影像更直接觀察到 (GA)12佔據細胞核孔,此進一步確認poly-GA可能影響核質運輸。綜合上述,透過光驅動胜肽可時空上專一地 (spatiotemporally) 啟動 (GA)12類澱粉聚集,本研究已建立一簡單之C9orf72相關ALS的疾病模型。而透過觀察光裂解胜肽片段引發細胞所發生的變化,未來希望以此作為疾病檢測或研究致病機制的工具。


Emerging evidences have revealed that the importance of mutant chromosome 9 open reading frame 72 (C9orf72) in amyotrophic lateral syndrome (ALS), a rare neurodegenerative disease. Intriguingly, one possibly translated dipeptide repeats (DPRs) of C9orf72, poly glycine-alanine (poly-GA) is considered amyloidogenic and it may cause nucleo-cytosol shuttling defect. However, the underlying mechanism and etiology remains obscure. To address this end, we designed and synthesized a photoinducible peptide device to learn the properties of dipeptide repeat in vitro and in cell. The UV-cleavable peptides, C(GA)12-PL-K8 and C(GA)12-PL-R8 are composed of octaarginines/octalysines and (GA)12 linked by a unnatural nitrobenzene amino acid. Upon photolysis, K8 or R8 segments will be cleaved and the high aggregation prone (GA)12 moiety, would initiate the amyloidogenesis process. We studied the biophysical properties of the peptides with/without UV irradiation, with Thioflavin T (ThT) fluorescence assay, transmission electron microscopy, and turbidity, respectively. For in vivo purpose, Alexa fluorophore 488 was conjugated on the peptide for cellular imageing. Upon UV irradiation, poly-GA fragment would interact and coaggerate with TDP-43 via seeding effect. Further more, with superresolution microscopy (stochastic optical reconstruction microscopy, STORM), direct visualization of (GA)12 and nucleopores was also attempted to elucidate how it impacts nuclear-cytosol shuttling. Therefore, a light-driven peptide enable spatiotemporal initiation of poly-GA aggregation. With the UV-inducible peptide, we have successfully established a simple model for C9orf72-associated ALS. In the future, it is possible the model can be extended for pathological examination or disease detection.

第一章 緒論 1.1 神經退化疾病 (Neurodegenerative Diseases) 1.2 肌萎縮性脊髓側索硬化症 (ALS) 1.2.1 Chromosome 9 open reading frame 72 (C9orf72) 1.2.2 The Glycine-Alanine Dipeptide Repeat from C9orf72 1.2.3 TAR DNA binding protein-43 1.3 類澱粉樣纖維性質 1.4 光控制類澱粉樣纖維聚集化現象 1.4.1 細胞穿膜序列與多正電序列 1.4.2 光裂解類胺基酸分子 1.5 超解析螢光顯微鏡(super-resolution fluorescence microscope) 1.6 隨機光學重建顯微術(stochastic optical reconstruction microscopy, STORM) 第二章 研究動機 2.1 使用合成的C9orf72 序列 2.2 建立細胞影像平台以觀察DPR (poly-GA) 在細胞中的特性以及可能之神經毒性 第三章 實驗材料與儀器 3.1 實驗儀器 3.2 實驗材料 第四章 實驗方法和儀器介紹 4.1 細胞培養 4.1.1 細胞株介紹 4.1.2 解凍細胞 (冷凍細胞活化) 4.1.3 細胞繼代 (Subculture) 4.1.4 細胞計數 4.1.5 細胞凍管製備 4.1.6 細胞轉染 (cell transfection) 以過度表達 (overexpression) 重組蛋白於神經細胞 4.2 細胞影像 4.2.1 共軛焦螢光顯微鏡觀測 (Confocal Microscopy) 4.2.2 隨機光學重建顯微術(stochastic optical reconstruction microscopy, STORM) 4.3 胜肽重複蛋白樣品製備 (合成、純化與鑑定) 4.3.1 固相胜肽合成法 (SPPS) 4.3.2 高效液相層析 (HPLC) 4.3.3 基質輔助雷射脫附游離質譜法 (MALDI mass spectrometry) 4.3.4 雙胜肽重複蛋白樣品螢光標記 4.4 雙胜肽重複蛋白樣品定性分析 4.4.1 圓二色光譜 (CD) 4.4.2 Thioflavin T螢光光譜 (fluorescence spectrometry) 4.4.3 穿透式電子顯微鏡 (TEM) 第五章 實驗結果 5.1 光化學雙胜肽重複蛋白樣品製備 (合成、純化與鑑定) 5.2 雙胜肽重複蛋白樣品螢光標記鑑定 5.3 雙胜肽重複蛋白樣品定性分析 5.3.1 超細微影像觀察-穿透式電子顯微鏡 (TEM) 5.3.2 濁度分析 5.3.3 胜肽之澱粉樣蛋白性質鑑定 (Thioflavin T螢光吸收) 5.3.4 圓二色光譜 (CD) 5.4 細胞影像分析結果 5.4.1 雙胜肽重複蛋白螢光標記樣品之共軛焦螢光顯微觀測 5.4.2 利用超解析螢光顯微術 (STORM) 觀測光誘導產生重複雙胜肽螢光標記樣品之聚集體妨害蛋白質在細胞內的核質傳輸 第六章 研究總結 參考資料 附圖

Al-Taei, S., N.A. Penning, J.C. Simpson, S. Futaki, T. Takeuchi, I. Nakase, and A.T. Jones. 2006. Intracellular traffic and fate of protein transduction domains HIV-1 TAT peptide and octaarginine. Implications for their utilization as drug delivery vectors. Bioconjugate Chem. 17:90-100.
Ayala, Y.M., P. Zago, A. D'Ambrogio, Y.F. Xu, L. Petrucelli, E. Buratti, and F.E. Baralle. 2008. Structural determinants of the cellular localization and shuttling of TDP-43. J Cell Sci. 121:3778-3785.
Banks, G.T., A. Kuta, A.M. Isaacs, and E.M.C. Fisher. 2008. TDP-43 is a culprit in human neurodegeneration, and not just an innocent bystander. Mamm Genome. 19:299-305.
Bose, J.K., I.F. Wang, L. Hung, W.Y. Tarn, and C.K.J. Shen. 2008. TDP-43 Overexpression Enhances Exon 7 Inclusion during the Survival of Motor Neuron Pre-mRNA Splicing. J Biol Chem. 283:28852-28859.
Bucciantini, M., E. Giannoni, F. Chiti, F. Baroni, L. Formigli, J.S. Zurdo, N. Taddei, G. Ramponi, C.M. Dobson, and M. Stefani. 2002. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature. 416:507-511.
Butterfield, S., M. Hejjaoui, B. Fauvet, L. Awad, and H.A. Lashuel. 2012. Chemical Strategies for Controlling Protein Folding and Elucidating the Molecular Mechanisms of Amyloid Formation and Toxicity. J Mol Biol. 421:204-236.
Cassel, J.A., B.E. Blass, A.B. Reitz, and A.C. Pawlyk. 2010. Development of a Novel Nonradiometric Assay for Nucleic Acid Binding to TDP-43 Suitable for High-Throughput Screening Using AlphaScreen (R) Technology. J Biomol Screen. 15:1099-1106.
Chang, Y.J., U.S. Jeng, Y.L. Chiang, I.S. Hwang, and Y.R. Chen. 2016. The Glycine-Alanine Dipeptide Repeat from C9orf72 Hexanucleotide Expansions Forms Toxic Amyloids Possessing Cell-to-Cell Transmission Properties. J Biol Chem. 291:4903-4911.
Chen, A.K.H., R.Y.Y. Lin, E.Z.J. Hsieh, P.H. Tu, R.P.Y. Chen, T.Y. Liao, W.L. Chen, C.H. Wang, and J.J.T. Huang. 2010. Induction of Amyloid Fibrils by the C-Terminal Fragments of TDP-43 in Amyotrophic Lateral Sclerosis. J Am Chem Soc. 132:1186-+.
Coltharp, C., R.P. Kessler, and J. Xiao. 2012. Accurate Construction of Photoactivated Localization Microscopy (PALM) Images for Quantitative Measurements. Plos One. 7.
DeJesus-Hernandez, M., I.R. Mackenzie, B.F. Boeve, A.L. Boxer, M. Baker, N.J. Rutherford, A.M. Nicholson, N.A. Finch, H. Flynn, J. Adamson, N. Kouri, A. Wojtas, P. Sengdy, G.Y. Hsiung, A. Karydas, W.W. Seeley, K.A. Josephs, G. Coppola, D.H. Geschwind, Z.K. Wszolek, H. Feldman, D.S. Knopman, R.C. Petersen, B.L. Miller, D.W. Dickson, K.B. Boylan, N.R. Graff-Radford, and R. Rademakers. 2011. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 72:245-256.
Dobson, C.M. 2003. Protein folding and misfolding. Nature. 426:884-890.
Freibaum, B.D., and J.P. Taylor. 2017. The Role of Dipeptide Repeats in C9ORF72-Related ALS-FTD. Front Mol Neurosci. 10.
Fung, G., J. Shi, H. Deng, J. Hou, C. Wang, A. Hong, J. Zhang, W. Jia, and H. Luo. 2015. Cytoplasmic translocation, aggregation, and cleavage of TDP-43 by enteroviral proteases modulate viral pathogenesis. Cell Death Differ. 22:2087-2097.
Furukawa, Y., K. Kaneko, S. Watanabe, K. Yamanaka, and N. Nukina. 2011. A Seeding Reaction Recapitulates Intracellular Formation of Sarkosyl-insoluble Transactivation Response Element (TAR) DNA-binding Protein-43 Inclusions. J Biol Chem. 286:18664-18672.
Futaki, S., T. Suzuki, W. Ohashi, T. Yagami, S. Tanaka, K. Ueda, and Y. Sugiura. 2001. Arginine-rich peptides - An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem. 276:5836-5840.
Geser, F., M. Martinez-Lage, L.K. Kwong, V.M.Y. Lee, and J.Q. Trojanowski. 2009. Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: the TDP-43 diseases. J Neurol. 256:1205-1214.
Haeusler, A.R., C.J. Donnelly, and J.D. Rothstein. 2016. The expanding biology of the C9orf72 nucleotide repeat expansion in neurodegenerative disease. Nat Rev Neurosci. 17:383-395.
He, R.Y., S.H. Chao, Y.J. Tsai, C.C. Lee, C.Y. Yu, H.D. Gao, Y.A. Huang, E. Hwang, H.M. Lee, and J.J. Huang. 2017. Photocontrollable Probe Spatiotemporally Induces Neurotoxic Fibrillar Aggregates and Impairs Nucleocytoplasmic Trafficking. ACS nano.
Hell, S.W., and J. Wichmann. 1994. Breaking the Diffraction Resolution Limit by Stimulated-Emission - Stimulated-Emission-Depletion Fluorescence Microscopy. Optics letters. 19:780-782.
Hodi, F.S., S.J. O'Day, D.F. McDermott, R.W. Weber, J.A. Sosman, J.B. Haanen, R. Gonzalez, C. Robert, D. Schadendorf, J.C. Hassel, W. Akerley, A.J.M. van den Eertwegh, J. Lutzky, P. Lorigan, J.M. Vaubel, G.P. Linette, D. Hogg, C.H. Ottensmeier, C. Lebbe, C. Peschel, I. Quirt, J.I. Clark, J.D. Wolchok, J.S. Weber, J. Tian, M.J. Yellin, G.M. Nichol, A. Hoos, and W.J. Urba. 2010. Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. New Engl J Med. 363:711-723.
Holmes, C.P. 1997. Model studies for new o-nitrobenzyl photolabile linkers: Substituent effects on the rates of photochemical cleavage. J Org Chem. 62:2370-2380.
Holmes, C.P., and D.G. Jones. 1995. Reagents for Combinatorial Organic-Synthesis - Development of a New O-Nitrobenzyl Photolabile Linker for Solid-Phase Synthesis. J Org Chem. 60:2318-2319.
Igaz, L.M., L.K. Kwong, A. Chen-Plotkin, M.J. Winton, T.L. Unger, Y. Xu, M. Neumann, J.Q. Trojanowski, and V.M.Y. Lee. 2009. Expression of TDP-43 C-terminal Fragments in Vitro Recapitulates Pathological Features of TDP-43 Proteinopathies. J Biol Chem. 284:8516-8524.
Lee, H.M., M.A. Priestman, and D.S. Lawrence. 2010. Light-Mediated Spatial Control via Photolabile Fluorescently Quenched Peptide Cassettes. J Am Chem Soc. 132:1446-+.
Liu, G.C.H., B.P.W. Chen, N.T.J. Ye, C.H. Wang, W.L. Chen, H.M. Lee, S.I. Chan, and J.J.T. Huang. 2013. Delineating the membrane-disrupting and seeding properties of the TDP-43 amyloidogenic core. Chem Commun. 49:11212-11214.
Madani, F., S. Lindberg, U. Langel, S. Futaki, and A. Graslund. 2011. Mechanisms of cellular uptake of cell-penetrating peptides. Journal of biophysics. 2011:414729.
Mandal, D., A.N. Shirazi, and K. Parang. 2011. Cell-Penetrating Homochiral Cyclic Peptides as Nuclear-Targeting Molecular Transporters. Angew Chem Int Edit. 50:9633-9637.
Manley, S., J.M. Gillette, G.H. Patterson, H. Shroff, H.F. Hess, E. Betzig, and J. Lippincott-Schwartz. 2008. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods. 5:155-157.
Merrifield, R.B. 1963. Solid Phase Peptide Synthesis .1. Synthesis of a Tetrapeptide. J Am Chem Soc. 85:2149-&.
Neumann, M., D.M. Sampathu, L.K. Kwong, A.C. Truax, M.C. Micsenyi, T.T. Chou, J. Bruce, T. Schuck, M. Grossman, C.M. Clark, L.F. McCluskey, B.L. Miller, E. Masliah, I.R. Mackenzie, H. Feldman, W. Feiden, H.A. Kretzschmar, J.Q. Trojanowski, and V.M.Y. Lee. 2006. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 314:130-133.
Nonaka, T., M. Masuda-Suzukake, T. Arai, Y. Hasegawa, H. Akatsu, T. Obi, M. Yoshida, S. Murayama, D.M.A. Mann, H. Akiyama, and M. Hasegawa. 2013. Prion-like Properties of Pathological TDP-43 Aggregates from Diseased Brains. Cell Rep. 4:124-134.
Radford, S.E., and C.M. Dobson. 1999. From computer simulations to human disease: emerging themes in protein folding. Cell. 97:291-298.
Renton, A.E., E. Majounie, A. Waite, J. Simon-Sanchez, S. Rollinson, J.R. Gibbs, J.C. Schymick, H. Laaksovirta, J.C. van Swieten, L. Myllykangas, H. Kalimo, A. Paetau, Y. Abramzon, A.M. Remes, A. Kaganovich, S.W. Scholz, J. Duckworth, J. Ding, D.W. Harmer, D.G. Hernandez, J.O. Johnson, K. Mok, M. Ryten, D. Trabzuni, R.J. Guerreiro, R.W. Orrell, J. Neal, A. Murray, J. Pearson, I.E. Jansen, D. Sondervan, H. Seelaar, D. Blake, K. Young, N. Halliwell, J.B. Callister, G. Toulson, A. Richardson, A. Gerhard, J. Snowden, D. Mann, D. Neary, M.A. Nalls, T. Peuralinna, L. Jansson, V.M. Isoviita, A.L. Kaivorinne, M. Holtta-Vuori, E. Ikonen, R. Sulkava, M. Benatar, J. Wuu, A. Chio, G. Restagno, G. Borghero, M. Sabatelli, I. Consortium, D. Heckerman, E. Rogaeva, L. Zinman, J.D. Rothstein, M. Sendtner, C. Drepper, E.E. Eichler, C. Alkan, Z. Abdullaev, S.D. Pack, A. Dutra, E. Pak, J. Hardy, A. Singleton, N.M. Williams, P. Heutink, S. Pickering-Brown, H.R. Morris, P.J. Tienari, and B.J. Traynor. 2011. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 72:257-268.
Robinson, J.L., F. Geser, A. Stieber, M. Umoh, L.K. Kwong, V.M. Van Deerlin, V.M.Y. Lee, and J.Q. Trojanowski. 2013. TDP-43 skeins show properties of amyloid in a subset of ALS cases. Acta Neuropathol. 125:121-131.
Ross, C.A., and M.A. Poirier. 2004. Protein aggregation and neurodegenerative disease. Nat Med. 10:S10-S17.
Rothstein, J.D. 2009. Current Hypotheses for the Underlying Biology of Amyotrophic Lateral Sclerosis. Ann Neurol. 65:S3-S9.
Rust, M.J., M. Bates, and X.W. Zhuang. 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 3:793-795.
Sayers, E.J., K. Cleal, N.G. Eissa, P. Watson, and A.T. Jones. 2014. Distal phenylalanine modification for enhancing cellular delivery of fluorophores, proteins and quantum dots by cell penetrating peptides. J Control Release. 195:55-62.
Sengupta, P., and J. Lippincott-Schwartz. 2012. Quantitative analysis of photoactivated localization microscopy (PALM) datasets using pair-correlation analysis. Bioessays. 34:396-405.
Sephton, C.F., C. Cenik, A. Kucukural, E.B. Dammer, B. Cenik, Y.H. Han, C.M. Dewey, F.P. Roth, J. Herz, J.M. Peng, M.J. Moore, and G. Yu. 2011. Identification of Neuronal RNA Targets of TDP-43-containing Ribonucleoprotein Complexes. J Biol Chem. 286:1204-1215.
Sipe, J.D., and A.S. Cohen. 2000. Review: history of the amyloid fibril. Journal of structural biology. 130:88-98.
Soto, C. 2003. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat Rev Neurosci. 4:49-60.
Suzuki, T., S. Futaki, M. Niwa, S. Tanaka, K. Ueda, and Y. Sugiura. 2002. Possible existence of common internalization mechanisms among arginine-rich peptides. J Biol Chem. 277:2437-2443.
Takayama, K., H. Hirose, G. Tanaka, S. Pujals, S. Katayama, I. Nakase, and S. Futaki. 2012. Effect of the attachment of a penetration accelerating sequence and the influence of hydrophobicity on octaarginine-mediated intracellular delivery. Molecular pharmaceutics. 9:1222-1230.
Vicidomini, G., I.C. Hernandez, M. d'Amora, F.C. Zanacchi, P. Bianchini, and A. Diaspro. 2014. Gated CW-STED microscopy: A versatile tool for biological nanometer scale investigation. Methods. 66:124-130.
Walsh, D.M., I. Klyubin, J.V. Fadeeva, W.K. Cullen, R. Anwyl, M.S. Wolfe, M.J. Rowan, and D.J. Selkoe. 2002. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 416:535-539.
Wang, I.F., H.Y. Chang, S.C. Hou, G.G. Liou, T.D. Way, and C.K.J. Shen. 2012. The self-interaction of native TDP-43 C terminus inhibits its degradation and contributes to early proteinopathies. Nat Commun. 3.
Wang, I.F., L.S. Wu, and C.K.J. Shen. 2008. TDP-43: an emerging new player in neurodegenerative diseases. Trends Mol Med. 14:479-485.
Yamakawa, M., D. Ito, T. Honda, K. Kubo, M. Noda, K. Nakajima, and N. Suzuki. 2015. Characterization of the dipeptide repeat protein in the molecular pathogenesis of c9FTD/ALS. Hum Mol Genet. 24:1630-1645.
Zhang, Y.J., T.F. Gendron, J.C. Grima, H. Sasaguri, K. Jansen-West, Y.F. Xu, R.B. Katzman, J. Gass, M.E. Murray, M. Shinohara, W.L. Lin, A. Garrett, J.N. Stankowski, L. Daughrity, J.M. Tong, E.A. Perkerson, M. Yue, J. Chew, M. Castanedes-Casey, A. Kurti, Z.Z.S. Wang, A.M. Liesinger, J.D. Baker, J. Jiang, C. Lagier-Tourenne, D. Edbauer, D.W. Cleveland, R. Rademakers, K.B. Boylan, G.J. Bu, C.D. Link, C.A. Dickey, J.D. Rothstein, D.W. Dickson, J.D. Fryer, and L. Petrucelli. 2016. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat Neurosci. 19:668-+.
Zhang, Y.J., Y.F. Xu, C. Cook, T.F. Gendron, P. Roettges, C.D. Link, W.L. Lin, J.M. Tong, M. Castanedes-Casey, P. Ash, J. Gass, V. Rangachari, E. Buratti, F. Baralle, T.E. Golde, D.W. Dickson, and L. Petrucelli. 2009. Aberrant cleavage of TDP-43 enhances aggregation and cellular toxicity. P Natl Acad Sci USA. 106:7607-7612.

無法下載圖示 全文公開日期 2022/07/06 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE