簡易檢索 / 詳目顯示

研究生: 劉威翔
Wei-Hsiang Liu
論文名稱: 以批次發泡法製備聚醯胺泡珠材料之研究
Preparation of Polyamide Bead Foam by Batch Foaming
指導教授: 葉樹開
Shu-Kai Yeh
口試委員: 鄭智嘉
Chih-Chia Cheng
蘇至善
Chie-Shaan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 118
中文關鍵詞: 聚醯胺尼龍泡珠材料二氧化碳批次發泡
外文關鍵詞: polyamide, nylon, bead foam, carbon dioxide, batch foaming
相關次數: 點閱:398下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚醯胺(polyamide, PA)商品名為尼龍(Nylon),是一種結晶型高分子,由於結晶會嚴重影響高分子在發泡時的黏度和熔體強度,加工窗口非常窄。本研究以不同熔點的聚醯胺與添加劑進行共混以製備低密度之聚醯胺泡珠材料。
    本實驗第一部分將不同熔點的聚醯胺依不同比例進行熔融混練。藉由DSC分析結果,將尼龍6(PA 6)與尼龍共聚物(PA 6C)依20:80比例配置之共混物具有雙熔峰結構,且結晶度明顯下降至20%,而雙熔峰溫差(Tm)達15°C。在共混物加入2 phr的苯乙烯-馬來酸酐共聚物(SMA)或1 phr的商用擴鏈劑(Joncryl ADR 4368 C, ADR)會使結晶度約下降到15%。
    第二部分以二氧化碳對聚醯胺共混物進行二步法批次發泡,在固定含浸壓力及發泡溫度下,探討含浸溫度對於泡孔型態之影響。隨著含浸溫度上升(80~120°C),聚醯胺共混物之膨脹倍率可達3.5倍,而加入添加劑會因為黏度上升,抑制泡孔成長。此外在實驗結果觀察到聚醯胺共混物具有bimodal泡孔結構,在80°C下含浸會有泡孔分散不均或未發泡之情形發生,此外加入添加劑會使bimodal泡孔結構更加嚴重。
    第三部分以DSC及XRD分析聚醯胺發泡材料,實驗結果發現,發泡材料仍具有雙熔峰結構,而此結構可能之組成為α晶型。


    Polyamide (PA), commonly known as Nylon, is a crystalline polymer. Since the crystallization seriously affects the viscosity and the melt strength of polymer during foaming, the foaming process window is very narrow. However, high temperature bead foam is quite rare in the market. In this research, different melting point polyamides was blended with additives to prepare low density polyamide bead foam.
    In the first part of the experiment, polyamide with different melting points were prepared and blended in different ratio. The DSC analysis results showed that polyamide 6 (PA 6) and copolyamide (PA 6C) blends with a ratio of 20:80 have a double melting peak structure and the crystallinity is significantly reduced to 20%. The temperature difference of the double melting peak is 15 °C. Adding 2 phr of SMA (Styrene maleic anhydride) or 1 phr of chain extender (Joncryl ADR 4368 C, ADR) in the blends would make the crystallinity further dropped to about 15%.
    The second part is a two-step batch foaming of polyamide blends with carbon dioxide. Under a fixed saturation pressure and foaming temperature, the effect of saturation temperature to cell morphology was discussed. When the saturation temperature were increased (80~120 °C), the expansion ratio of polyamide blends reached 3.5 times and the addition of additives would inhibit the cell growth due to the increase of viscosity. In addition, it was observed that the polyamide blend had a bimodal cell structure and the saturation in 80 °C would result in non-uniform or unfoamed cells structure, moreover adding additives can make the bimodal cell structure more severe.
    In the third part, the polyamide foamed materials were characterized by DSC and XRD. The experimental results show that the foamed material still indicated a double melting peak structure after foaming, and the composition of this structure is mainly from α crystal form.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章、緒論 1 第二章、文獻回顧 5 2.1聚醯胺 5 2.1.1聚醯胺之背景 5 2.1.2聚醯胺之命名及結構 7 2.1.3聚醯胺之性質及用途 10 2.1.3.1熱性質 10 2.1.3.2結晶性 12 2.1.3.3吸水性 16 2.1.3.4其他特性 16 2.1.4聚醯胺之共混 17 2.2高分子發泡材料 20 2.2.1泡珠材料 21 2.2.1.1泡珠材料之生產方式及分類 21 2.2.1.2泡珠材料之成型 23 2.2.2發泡劑 26 2.2.3發泡機制 28 2.2.4批次發泡 34 第三章、實驗方法 35 3.1實驗藥品 35 3.2實驗儀器 40 3.3實驗流程與步驟 42 3.3.1實驗流程圖 42 3.3.2混煉不同比例的聚醯胺 43 3.3.3混煉聚醯胺與添加劑 43 3.3.4混煉最佳比例之聚醯胺與添加劑 43 3.3.5批次發泡 44 3.4量測方式 46 3.4.1示差掃描量熱儀分析(DSC) 46 3.4.2熱重損失分析儀(TGA) 48 3.4.3熔融指數儀(MFI) 48 3.4.4 X光繞射儀(XRD) 49 3.4.5掃描式電子顯微鏡(SEM) 50 3.4.6發泡密度(foam density)量測 50 3.4.7泡孔孔徑(cell size)計算 51 3.4.8泡孔密度(cell density)計算 51 第四章、結果與討論 52 4.1聚醯胺之材料性質分析 52 4.1.1示差掃描量熱儀器分析(DSC) 52 4.1.1.1混煉不同比例的聚醯胺 52 4.1.1.2混煉聚醯胺與添加劑 55 4.1.1.3混煉最佳比例之聚醯胺與添加劑 57 4.1.2密度量測 59 4.1.3熔融指數量測(MFI) 59 4.1.4熱重損失分析(TGA) 60 4.2聚醯胺之批次發泡分析 61 4.2.1含浸溫度對於泡孔型態之影響 61 4.2.2發泡溫度對於泡孔型態之影響 72 4.3聚醯胺發泡材料之性質分析 80 4.3.1示差掃描量熱儀器分析(DSC) 80 4.3.2 X光繞射分析(XRD) 84 第五章、結論 90 參考文獻 92 附錄 A 高黏度PA 6與PA 6C不同比例共混之DSC分析 106 附錄 B 最佳比例之高黏度PA 6與添加劑共混之DSC分析 107 附錄 C 低黏度PA 6與PA 6C不同比例共混之不同冷卻速率之DSC分析 108 附錄 D 高黏度PA 6與PA 6C不同比例共混之不同冷卻速率之DSC分析 109 附錄 E 最佳比例之低黏度PA 6與添加劑共混不同冷卻速率之DSC分析 110 附錄 F 最佳比例之高黏度PA 6與添加劑共混不同冷卻速率之DSC分析 111 附錄 G 最佳比例之高黏度PA 6與添加劑之批次發泡分析 112 附錄 H PA 6C批次發泡分析 113 附錄 I 相同分析區域下不同含浸溫度之泡孔累計分析 114 附錄 J 聚醯胺發泡材料水中造粒及黏合性測試 117 附錄 K 聚醯胺共混物熱處理與高壓二氧化碳含浸未發泡之XRD分析 118

    1. L. Sorrentino, M. Aurilia and S. Iannace, Polymeric foams from high-performance thermoplastics. Advances in Polymer Technology, 2011. 30: p. 234-243.
    2. S. N. Leung, A. Wong, C. B. Park and J. H. Zong, Ideal surface geometries of nucleating agents to enhance cell nucleation in polymeric foaming processes. Journal of Applied Polymer Science, 2008. 108: p. 3997-4003.
    3. M. Saniei, M. P. Tran, S. S. Bae, P. Boahom, P. Gong and C. B. Park, From micro/nano structured isotactic polypropylene to a multifunctional low-density nanoporous medium. RSC Advances, 2016. 6: p. 108056-108066.
    4. Polymer foam market-global forecast to 2022. 2017; Available from: https://www.marketsandmarkets.com/Market-Reports/foams-market-1011.html.
    5. D. Raps, N. Hossieny, C. B. Park and V. Altstädt, Past and present developments in polymer bead foams and bead foaming technology. Polymer, 2015. 56: p. 5-19.
    6. Reducing CO2 emissions from passenger cars. Available from: https://ec.europa.eu/clima/policies/transport/vehicles/cars_en.
    7. P. Lehtonen, Method for coating a roll of a paper machine. US 5553381, 1996.
    8. S. T. Lee and D. P. K. Scholz, Polymeric foams: technology and developments in regulation, process, and products. CRC Press, 2008. Boca Raton, Florida.
    9. C. P. Park, G. A. Garcia and R. G. Watson, Amorphous polyester foam. US 5475037, 1995.
    10. O. Kriha, K. Hahn, P. Desbois, V. Warzelhan, H. Ruckdäschel, M. Hofmann, C. Exner and R. Hingmann, Expandable pelletized polyamide material. US 20110294910 A1, 2011.
    11. M. Naoki, Hata, N., Michi, H., Yuichi, G., Expanded particles and molded foam. JP 2016188321, 2016.
    12. T. Köppl, D. Raps and V. Altstädt, E-PBT - Bead foaming of poly(butylene terephthalate) by underwater pelletizing. Journal of Cellular Plastics, 2014. 50: p. 475-487.
    13. T. Richter, S. Schwarz-Barac, K. Bernhard, I. Liebl, M. Schnabel, S. Schweitzer, D. Poppe and J. Vorholz, Bead polymer for producing PMI foams. US 20150361236 A1, 2015.
    14. H. Wang, S. L. Zhang, M. Nofar, R. Barzegari, C. B. Park and Z. H. Jiang, Development of bead foaming technology for high performance peek I. Thermal analysis. in SPE ANTEC, Conference Proceedings, 2012. 3: p. 2355-2359.
    15. C. Schips, K. Hahn, I. Bellin, D. Longo, J. Assmann, A. Gietl and J. Gassan, Bead foam moldings composed of expandable acrylonitrile copolymers. US 20100190877 A1, 2010.
    16. O. Kriha, K. Hahn, P. Desbois, V. Warzelhan, H. Ruckdäschel, M. Hofmann, C. Exner and R. Hingmann, Expandable pelletized polyamide material. US 20110294910 A1, 2011.
    17. 塑膠世界雜誌社編, 工程塑膠全集. 塑膠世界雜誌社 , 台北市 , 2003.
    18. R. Mazurkiewicz and B. Misterek, Mechanical properties of reinforced polyamide foams obtained by injection molding. Polimery/Polymers, 1977. 22: p. 175-177.
    19. J. D. Martinache, J. R. Royer, S. Siripurapu, F. E. Hénon, J. Genzer, S. A. Khan and R. G. Carbonell, Processing of polyamide 11 with supercritical carbon dioxide. Industrial and Engineering Chemistry Research, 2001. 40: p. 5570-5577.
    20. W. Zheng, Y. H. Lee and C. B. Park, The effects of exfoliated nano-clay on the extrusion microcellular foaming of amorphous and crystalline nylon. Journal of Cellular Plastics, 2006. 42: p. 271-288.
    21. W. Zheng and C. B. Park. Clay exfoliation and content effect on nylon nanocomposite foams. in SPE ANTEC, Conference Proceedings, 2005. 7 : p. 171-176.
    22. M. Xu, H. Yan, Q. He, C. Wan, T. Liu, L. Zhao and C. B. Park, Chain extension of polyamide 6 using multifunctional chain extenders and reactive extrusion for melt foaming. European Polymer Journal, 2017. 96: p. 210-220.
    23. M. Yuan, L. S. Turng, S. Gong, D. Caulfield, C. Hunt and R. Spindler, Study of injection molded microcellular polyamide-6 nanocomposites. Polymer Engineering and Science, 2004. 44: p. 673-686.
    24. V. G. Izzard, H. Hadavinia, V. J. Morris, P. J. S. Foot, L. Wilson and K. Hewson, Compression and Recovery Behaviour of Polyamide-6 Based Foams. Polymers and Polymer Composites, 2012. 20: p. 425-437.
    25. K. Tazumi, and M. Shindo, polyamide foam sheet by reactive extrusion, in SPE Foams 2015, Kyoto, Japan.
    26. J. Peng, P. J. Walsh, R. C. Sabo, L.-S. Turng and C. M. Clemons, Water-assisted compounding of cellulose nanocrystals into polyamide 6 for use as a nucleating agent for microcellular foaming. Polymer, 2016. 84: p. 158-166.
    27. W. H. Liu, S. K. Yeh and L. Y. Tang. Preparation of microcellular polyamide 6 foam by batch foaming, in SPE Foams 2017, Bayreuth, Germany.
    28. E. K. Bolton, Chemical Industry Medal. Development of Nylon. Industrial and Engineering Chemistry, 1942. 34: p. 53-58.
    29. W. H. Carothers, Linear Condensation Polymers. US 2071250, 1937.
    30. W. H. Carothers, Synthetic fiber. US 2130948, 1937.
    31. P. Schlack, Preparation of Polyamides. US 2241321, 1939.
    32. Market report: global polyamide market. 2014; Available from: http://www.acmite.com/market-reports/chemicals/global-polyamide-market.html.
    33. 鄧如生、魏運方、陳步寧, 聚醯胺樹脂及其應用. 化學工業出版社, 中國北京市 , 2002.
    34. 郭寶華、張增民、徐軍, 聚酰胺合金技術與應用. 機械工業出版社, 中國北京市 , 2010.
    35. M. I. Kohan and M. I. Kohan, Nylon plastics handbook. Hanser Publishers, 1995. Munich Germany.
    36. K. Yukio, An investigation of the structures of polyamide series. Die Makromolekulare Chemie, 1959. 33: p. 1-20.
    37. Y. P. Khanna, Overview of transition phenomenon in nylon 6. Macromolecules, 1992. 25: p. 3298-3300.
    38. I. Kolesov and R. Androsch, The rigid amorphous fraction of cold-crystallized polyamide 6. Polymer, 2012. 53: p. 4770-4777.
    39. C. Millot, L.-A. Fillot, O. Lame, P. Sotta and R. Seguela, Assessment of polyamide-6 crystallinity by DSC. Journal of Thermal Analysis and Calorimetry, 2015. 122: p. 307-314.
    40. J. R. Xu, X. K. Ren, T. Yang, X. Q. Jiang, W. Y. Chang, S. Yang, A. Stroeks and E. Q. Chen, Revisiting the thermal transition of β-form polyamide-6: evolution of structure and morphology in uniaxially stretched films. Macromolecules, 2018. 51: p. 137-150.
    41. K. Mutsumasa and M. Shigenobu, Studies on crystalline forms of nylon 6. II. crystallization from the melt. Journal of Polymer Science Part A-2: Polymer Physics, 1972. 10: p. 1497-1508.
    42. T. D. Fornes and D. R. Paul, Crystallization behavior of nylon 6 nanocomposites. Polymer, 2003. 44: p. 3945-3961.
    43. S. M. Aharoni, n-Nylons: their synthesis, structure and properties. Wiley, 1997. USA.
    44. C. W. Bunn and E. V. Garner, The crystal structures of two polyamides ('Nylons'). Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1947. 189: p. 39-68.
    45. H. Arimoto, M. Ishibashi, M. Hirai and Y. Chatani, Crystal structure of the γ‐form of nylon 6. Journal of Polymer Science Part A: General Papers, 1965. 3: p. 317-326.
    46. K. H. Illers, Polymorphie, kristallinität und schmelzwärme von poly(ε‐caprolactam), 2. Kalorimetrische untersuchungen. Die Makromolekulare Chemie, 1978. 179: p. 497-507.
    47. I. Takashi, M. Hideki and A. Kenjiro, Thermal Properties of α- and γ-Forms of Nylon 6. Japanese Journal of Applied Physics, 1975. 14: p. 206-215.
    48. S. Gogolewski, M. Gasiorek, K. Czerniawska and A. J. Pennings, Annealing of melt-crystallized nylon 6. Colloid and Polymer Science, 1982. 260: p. 859-863.
    49. B. Wunderlich, Macromolecular physics. Academic Press, 1973. New York.
    50. D. R. Paul and J. W. Barlow, Polymer Blends (or Alloys). Journal of Macromolecular Science, Part C, 1980. 18: p. 109-168.
    51. L. A. Utracki, Polymer blends handbook, second edition . Springer, 2003. Berlin, Germany.
    52. T. X. Liu, Z. H. Liu, K. X. Ma, L. Shen, K. Y. Zeng and C. B. He, Morphology, thermal and mechanical behavior of polyamide 6/layered-silicate nanocomposites. Composites Science and Technology, 2003. 63: p. 331-337.
    53. K. Varlot, E. Reynaud, M. H. Kloppfer, G. Vigier and J. Varlet, Clay-reinforced polyamide: Preferential orientation of the montmorillonite sheets and the polyamide crystalline lamellae. Journal of Polymer Science, Part B: Polymer Physics, 2001. 39: p. 1360-1370.
    54. T. M. Wu and J. Y. Wu, Structural analysis of polyamide/clay nanocomposites. Journal of Macromolecular Science - Physics, 2002. 41 B: p. 17-31.
    55. S. H. Wu, F. Y. Wang, C. C. Ma, W. C. Chang, C. T. Kuo, H. C. Kuan and W. J. Chen, Mechanical, thermal and morphological properties of glass fiber and carbon fiber reinforced polyamide-6 and polyamide-6/clay nanocomposites. Materials Letters, 2001. 49: p. 327-333.
    56. D. M. Laura, H. Keskkula, J. W. Barlow and D. R. Paul, Effect of glass fiber surface chemistry on the mechanical properties of glass fiber reinforced, rubber-toughened nylon 6. Polymer, 2002. 43: p. 4673-4687.
    57. M. K. Akkapeddi, Glass fiber reinforced polyamide-6 nanocomposites. Polymer Composites, 2000. 21: p. 576-585.
    58. E. M. Araújo, E. Hage Jr and A. J. F. Carvalho, Thermal properties of nylon6/ABS polymer blends: compatibilizer effect. Journal of Materials Science, 2004. 39: p. 1173-1178.
    59. E. Lievana and J. Karger-Kocsis, Impact modification of PA-6 and PBT by epoxy-functionalized rubbers. Macromolecular Symposia, 2003. 202: p. 59-66.
    60. G. Burgisi, M. Paternoster, N. Peduto and A. Saraceno, Toughness enhancement of polyamide 6 modified with different types of rubber: The influence of internal rubber cavitation. Journal of Applied Polymer Science, 1997. 66: p. 777-787.
    61. B. K. Kim and S. J. Park, Reactive melt blends of nylon with poly(styrene‐co‐maleic anhydride). Journal of Applied Polymer Science, 1991. 43: p. 357-363.
    62. L. Dong, C. Xiong, T. Wang, D. Liu, S. Lu and Y. Wang, Preparation and properties of compatibilized PVC/SMA-g-PA6 blends. Journal of Applied Polymer Science, 2004. 94: p. 432-439.
    63. T. Yu, J. S. Chen, F. M. Wu and J. Rocks, Crosslinking of polyamide 6 by reactive processing, in Materials Science Forum. 2015. p. 576-582.
    64. M. Villalobos, A. Awojulu, T. Greeley, G. Turco and G. Deeter, Oligomeric chain extenders for economic reprocessing and recycling of condensation plastics. Energy, 2006. 31: p. 3227-3234.
    65. S. T. Lee and C. B. Park, Foam extrusion: principles and practice, second edition. CRC Press, 2014. Boca Raton, Florida.
    66. B. Notario, J. Pinto and M. A. Rodriguez-Perez, Nanoporous polymeric materials: A new class of materials with enhanced properties. Progress in Materials Science, 2016. 78-79: p. 93-139.
    67. C. Okolieocha, D. Raps, K. Subramaniam and V. Altstädt, Microcellular to nanocellular polymer foams: Progress (2004–2015) and future directions – A review. European Polymer Journal, 2015. 73: p. 500-519.
    68. L. J. Lee, C. C. Zeng, X. Cao, X. M. Han, J. Shen and G. J. Xu, Polymer nanocomposite foams. Composites Science and Technology, 2005. 65: p. 2344-2363.
    69. J. Rossacci and S. Shivkumar, Bead fusion in polystyrene foams. Journal of Materials Science, 2003. 38: p. 201-206.
    70. H. Kuwabara and Y. Sudo, Preliminarily foamed particles of non-crosslinked polypropylene-type resin. US 4587270, 1986.
    71. E. K. Lee, Novel manufacturing processes for polymer bead foams. Ph.D. dissertation, University of Toronto, Mechanical and Industrial Engineering , 2010.
    72. S. Nakai, K. Taki, I. Tsujimura and M. Ohshima, Numerical simulation of a polypropylene foam bead expansion process. Polymer Engineering and Science, 2008. 48: p. 107-115.
    73. C. Doriat, Cutting the gordian knot -a start-up and five partners from industry and research are developing a steamless process chain for energy-efficient processing and in-situ functionalization of particle foams, in Kunststoffe. 2017, Hanser. p. 17-20.
    74. W. Zhai, W. Feng, J. Ling and W. Zheng, Fabrication of lightweight microcellular polyimide foams with three-dimensional shape by CO2 foaming and compression molding. Industrial and Engineering Chemistry Research, 2012. 51: p. 12827-12834.
    75. M. Ziegler , A. Kauffmann and K. Hofmann, Method and device for thermally bonding expanded polymer particles. WO 2001064414 A1, 2001.
    76. 廖宗恩, 以固態發泡法製備聚甲基丙烯酸甲酯奈米泡材. 碩士論文 國立臺北科技大學: 化學工程與生物科技系, 2016.
    77. S. Shunahshep and K. K. W., Steady flow simulation of a polymer‐diluent solution through an abrupt axisymmetric contraction using internally consistent rheological scaling. Journal of Applied Polymer Science, 2007. 106: p. 1053-1074.
    78. A. Wong, L. H. Mark, M. M. Hasan and C. B. Park, The synergy of supercritical CO2 and supercritical N2 in foaming of polystyrene for cell nucleation. Journal of Supercritical Fluids, 2014. 90: p. 35-43.
    79. O. Secretariat, The Montreal protocol on substances that deplete the ozone layer, in United Nations Environment Programme. 2000: Nairobi, Kenya.
    80. S. K. Goel and E. J. Beckman, Generation of microcellular polymeric foams using supercritical carbon dioxide. I: effect of pressure and temperature on nucleation. Polymer Engineering and Science, 1994. 34: p. 1137-1147.
    81. S. K. Goel and E. J. Beckman, Generation of microcellular polymeric foams using supercritical carbon dioxide. II: cell growth and skin formation. Polymer Engineering and Science, 1994. 34: p. 1148-1156.
    82. Y. Sato, M. Yurugi, K. Fujiwara, S. Takishima and H. Masuoka, Solubilities of carbon dioxide and nitrogen in polystyrene under high temperature and pressure. Fluid Phase Equilibria, 1996. 125: p. 129-138.
    83. Y. Sato, K. Fujiwara, T. Takikawa, Sumarno, S. Takishima and H. Masuoka, Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene under high pressures and temperatures. Fluid Phase Equilibria, 1999. 162: p. 261-276.
    84. B. I. Chaudhary and A. I. Johns, Solubilities of nitrogen, isobutane and carbon dioxide in polyethylene. Journal of Cellular Plastics, 1998. 34: p. 312-328.
    85. C. B. Park, D. F. Baldwin and N. P. Suh, Effect of the pressure drop rate on cell nucleation in continuous processing of microcellular polymers. Polymer Engineering and Science, 1995. 35: p. 432-440.
    86. Z.-M. Xu, X.-L. Jiang, T. Liu, G.-H. Hu, L. Zhao, Z.-N. Zhu and W.-K. Yuan, Foaming of polypropylene with supercritical carbon dioxide. Journal of Supercritical Fluids, 2007. 41: p. 299-310.
    87. J. W. Gibbs, The Scientific Papers of J. Willard Gibbs, Vol. 1. Nabu Press, 1961. U.S.
    88. S. N. Leung, J. Wang, A. Wong and C. B. Park. The thermodynamic, kinetic, and rheological mechanisms of cellnucleation, growth and degradation in thermoplastic foaming: Theory, simulation, and experiment. in SPE Foams 2009, Texas, USA.
    89. J. S. Colton and N. P. Suh, The nucleation of microcellular thermoplastic foam with additives: Part I: Theoretical considerations. Polymer Engineering and Science, 1987. 27: p. 485-492.
    90. J. S. Colton and N. P. Suh, The nucleation of microcellular thermoplastic foam with additives: Part II: Experimental results and discussion. Polymer Engineering and Science, 1987. 27: p. 493-499.
    91. J. S. Colton and N. P. Suh, Nucleation of microcellular foam: Theory and practice. Polymer Engineering and Science, 1987. 27: p. 500-503.
    92. 陳瀅如, 以超臨界二氧化碳發泡製備石墨烯/熱塑性聚氨酯之微奈米孔洞發泡材料, 碩士論文 國立臺北科技大學: 化學工程與生物科技系, 2015.
    93. J. H. Han and C. D Han, Bubble nucleation in polymeric liquids. II. theoretical considerations. Journal of Polymer Science Part B: Polymer Physics, 1990. 28: p. 743-761.
    94. S. T. Lee, Shear effects on thermoplastic foam nucleation. Polymer Engineering and Science, 1993. 33: p. 418-422.
    95. S. N. Leung, A. Wong, L. C. Wang and C. B. Park, Mechanism of extensional stress-induced cell formation in polymeric foaming processes with the presence of nucleating agents. Journal of Supercritical Fluids, 2012. 63: p. 187-198.
    96. X. Sun, H. Liu, G. Li, X. Liao and J. He, Investigation on the cell nucleation and cell growth in microcellular foaming by means of temperature quenching. Journal of Applied Polymer Science, 2004. 93: p. 163-171.
    97. S. N. Leung, C. B. Park, D. Xu, H. Li and R. G. Fenton, Computer simulation of bubble-growth phenomena in foaming. Industrial and Engineering Chemistry Research, 2006. 45: p. 7823-7831.
    98. S. Costeux, I. Khan, S. P. Bunker and H. K. Jeon, Experimental study and modeling of nanofoams formation from single phase acrylic copolymers. Journal of Cellular Plastics, 2014. 51: p. 197-221.
    99. I. Tsivintzelis, A. G. Angelopoulou and C. Panayiotou, Foaming of polymers with supercritical CO2: An experimental and theoretical study. Polymer, 2007. 48: p. 5928-5939.
    100. S. Costeux, CO2 blown nanocellular foams. Journal of Applied Polymer Science, 2014. 131.
    101. H. Y. Mi, X. Jing, M. R. Salick, W. C. Crone, X. F. Peng and L.S. Turng, Approach to fabricating thermoplastic polyurethane blends and foams with tunable properties by twin-screw extrusion and microcellular injection molding. Advances in Polymer Technology, 2014. 33: p. 21380.
    102. L. J. White, V. Hutter, H. Tai, S. M. Howdle and K. M. Shakesheff, The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering. Acta Biomater, 2012. 8: p. 61-71.
    103. L. M. Matuana, C. B. Park and J. J. Balatinecz, Processing and cell morphology relationships for microcellular foamed PVC/wood-fiber composites. Polymer Engineering and Science, 1997. 37: p. 1137-1147.
    104. H. E. Naguib, C. B. Park and N. Reichelt, Fundamental foaming mechanisms governing the volume expansion of extruded polypropylene foams. Journal of Applied Polymer Science, 2004. 91: p. 2661-2668.
    105. S. C. Frerich, Biopolymer foaming with supercritical CO2—Thermodynamics, foaming behaviour and mechanical characteristics. Journal of Supercritical Fluids, 2015. 96: p. 349-358.
    106. TA. Instruments. Interpreting Unexpected Events and Transitions in DSC Results. Applications Notes Library, TA039.
    Available from: http://tainstruments.com/pdf/literature/TA039.pdf.
    107. TA. Instruments. Thermal 1 Enhanced DSC Glass Transition Measurements. Applications Notes Library, TN07.
    Available from: http://www.tainstruments.com/pdf/literature/TN7.pdf.
    108. R. V. Grieken and A. Kuczumow, Handbook of X-Ray Spectrometry, second edition. CRC Press, 2001. Boca Raton, Florida.
    109. V. Kumar and N. P. Suh, A process for making microcellular thermoplastic parts. Polymer Engineering and Science, 1990. 30: p. 1323-1329.
    110. T. S. Ellis, Miscibility and immiscibility of polyamide blends. Macromolecules, 1989. 22: p. 742-754.
    111. K. Dedecker and G. Groeninckx, Interfacial graft copolymer formation during reactive melt blending of polyamide 6 and styrene-maleic anhydride copolymers. Macromolecules, 1999. 32: p. 2472-2479.
    112. Y. Lin, W. Zhong, L. Shen, P. Xu and Q. Du, Study on the relationship between crystalline structures and physical properties of polyamide‐6. Journal of Macromolecular Science, Part B, 2005. 44: p. 161-175.
    113. Z. Ma, G. Zhang, Q. Yang, X. Shi and A. Shi, Fabrication of microcellular polycarbonate foams with unimodal or bimodal cell-size distributions using supercritical carbon dioxide as a blowing agent. Journal of Cellular Plastics, 2014. 50: p. 55-79.
    114. J. B. Bao, G. S. Weng, L. Zhao, Z. F. Liu and Z. R. Chen, Tensile and impact behavior of polystyrene microcellular foams with bi-modal cell morphology. Journal of Cellular Plastics, 2014. 50: p. 381-393.
    115. A. Salerno, E. Di Maio, S. Iannace and P. A. Netti, Solid-state supercritical CO2 foaming of PCL and PCL-HA nano-composite: Effect of composition, thermal history and foaming process on foam pore structure. Journal of Supercritical Fluids, 2011. 58: p. 158-167.
    116. A. Salerno, S. Zeppetelli, E. Di Maio, S. Iannace and P. A. Netti, Design of bimodal PCL and PCL-HA nanocomposite scaffolds by two step depressurization during solid-state supercritical CO2 foaming. Macromolecular Rapid Communications, 2011. 32: p. 1150-1156.
    117. K. A. Arora, A. J. Lesser and T. J. Mccarthy, Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide. Macromolecules, 1998. 31: p. 4614-4620.
    118. X. Sun, G. Li, X. Liao and J. He, An investigation on the cell nucleation and cell growth of microcellular foaming by means of dual depressurization. Acta Polymerica Sinica, 2004: p. 93-97.
    119. H. Yokoyama and K. Sugiyama, Nanocellular structures in block copolymers with CO2-philic blocks using CO2 as a blowing agent: Crossover from micro- to nanocellular structures with depressurization temperature. Macromolecules, 2005. 38: p. 10516-10522.
    120. J. B. Bao, T. Liu, L. Zhao and G. H. Hu, A two-step depressurization batch process for the formation of bi-modal cell structure polystyrene foams using scCO2. Journal of Supercritical Fluids, 2011. 55: p. 1104-1114.
    121. D. C. Li, T. Liu, L. Zhao and W. K. Yuan, Foaming of linear isotactic polypropylene based on its non-isothermal crystallization behaviors under compressed CO2. Journal of Supercritical Fluids, 2011. 60: p. 89-97.
    122. A. K. Bledzki and O. Faruk, Microcellular injection molded wood fiber-PP composites: Part I - effect of chemical foaming agent content on cell morphology and physico-mechanical properties. Journal of Cellular Plastics, 2006. 42: p. 63-76.
    123. A. K. Bledzki and O. Faruk, Injection moulded microcellular wood fibre-polypropylene composites. Composites Part A: Applied Science and Manufacturing, 2006. 37: p. 1358-1367.
    124. H. Wang, J. Li, Z. Wang, D. Wang and H. Zhan, experimental investigation of the mechanism of foaming agent concentration affecting foam stability. Journal of Surfactants and Detergents, 2017. 20: p. 1443-1451.
    125. S. K. Goel and E. J. Beckman, Generation of microcellular polymeric foams using supercritical carbon dioxide. I: effect of pressure and temperature on nucleation. Polymer Engineering and Science, 1994. 34: p. 1137-1147.
    126. W. Zhai, T. Kuboki, L. Wang, C. B. Park, E. K. Lee and H. E. Naguib, Cell structure evolution and the crystallization behavior of polypropylene/clay nanocomposites foams blown in continuous extrusion. Industrial and Engineering Chemistry Research, 2010. 49: p. 9834-9845.
    127. F. T. L. Muniz, M. A. R. Miranda, C. Morilla Dos Santos and J. M. Sasaki, The Scherrer equation and the dynamical theory of X-ray diffraction. Acta Crystallographica Section A: Foundations and Advances, 2016. 72: p. 385-390.
    128. J. Pepin, V. Miri and J.-M. Lefebvre, New insights into the Brill transition in polyamide 11 and polyamide 6. Macromolecules, 2016. 49: p. 564-573.

    無法下載圖示 全文公開日期 2023/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE