簡易檢索 / 詳目顯示

研究生: 黃恩佐
EN-TSO HUANG
論文名稱: 以薄化銅銀電極搭配高效率氯化硼亞酞菁吸光層製作具低電壓高響應度之可見光光感測有機薄膜電晶體之技術開發與研究
Investigation of the Visible Light Photo-OTFT with Low Operation Voltage and High Photo-responsivity by Using Ultra-thin Cu : Ag Electrode and High-efficiency SubPc Absorption Layer
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 李志堅
Chih-Chien Lee
劉舜維
Shun-Wei Liu
顏文正
Wen-Zheng Yan
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 125
中文關鍵詞: 低電壓驅動高響應度有機光電晶體
外文關鍵詞: low voltage driving, high responsivity, Organic phototransistor
相關次數: 點閱:446下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

具有高介電常數、低漏電流和良好的機械穩定性的可低溫製程的閘極絕緣層被廣泛應用在可撓式元件、可穿戴型裝置。目前有機光感測薄膜電晶體所遭遇的困難為其於可見光的響應度普遍不高及操作電壓太高不易應用,為解決此困境,本研究團隊將利用原子層沉積(ALD)高介電係數閘極絕緣層搭配超薄的 Cu:Ag 金屬電極來進一步減少閘極絕緣層的厚度,有效降低驅動電壓、提升驅動電流,並搭配高效率 SubPc 吸光層,放大可見光波段光感應電流進而有效提升響應度。
本論文將以 Pentacene 作為主動層材料,並分為兩部分來探討,第一部分為製作低電壓有機薄膜電晶體,元件使用原子層沉積(ALD)雙層 High-K 閘極絕緣層 ALD-HfO2 與 ALD-Al2O3沉積於薄化的 Cu:Ag 閘極之上,增加驅動電流、有效降低電晶體之驅動電壓,並進行電容量測確定 ALD-HfO2 與 ALD-Al2O3 的介電係數,經由實驗結果得知以薄化的Cu:Ag 合金作為閘極搭配 ALD 的絕緣層可有效降低驅動電壓。另外可由 AFM 材料分析得知薄化後的 Cu:Ag 閘極仍保有相當平滑的表面(Rms < 1 nm),代表閘極絕緣層能妥善沉積於閘極上。接著變化閘極絕緣層的厚度,取最佳化參數並接續製作成低電壓有機光感測薄膜電晶體。
第二部分為製作成低電壓有機光感測薄膜電晶體,在 Pentacene 通道層上共蒸鍍高吸收效率混合吸光層 SubPc,使用劉舜維教授實驗室已知的鍍率,元件製作完後使用 UVVisible 光譜儀量測薄膜可見光波段之吸收度,量測照光後變化的電特性,並計算出分別之光響應度,光靈敏度、EQE 與偵測度。
從第一部分可以得知使用單層 ALD-HfO2 閘極絕緣層,因其表面與 ALD-Al2O3 相比較疏水,主動層 Pentacene 沉積於上擁有較大顆的晶粒因此具有較好的電特性後,第二部分通過調變吸光層(SubPc)厚度(40、60、80 nm)至元件電特性及響應度達最佳值,並利用 UV-Visible 光譜儀量測薄膜之光吸收度,驗證 SubPc 之厚度變化在可見光波段的吸收度確實明顯的提升。


Organic Phototransistors (OPTs) have great potential for application in IoT (Internet of Things) photosensor, biomedical sensing, display, etc. We will develope an organic ambient light thin film phototransistor combining with low-temperature-processed atomic layer deposited (ALD) ultra-thin High-K gate insulator at glass substrate. The combination and architecture of these layer’s materials will achieve the goal of excellent light sensing device with low operating voltage, high absorption efficiency, high stability and high responsivity for ambient light wavelength.
The current problems encountered by organic phototransistor are that the low responsivity in visible light and the high operating voltage, which limits its applicability. To solve this dilemma, we will develop the optimal conditions of the atomic layer deposited ultra-thin HighK gate insulators combining with the ultra-thin metal film (Cu : Ag) as metal gate to further reduce the thickness of the gate insulator layer, to significantly reduce the operating voltage (less than 2V) and amplifying the light-induced current to effectively improve the responsibility.
Moreover, we will develop a hybrid structure combining the high-efficiency visible light absorption layer SubPc absorption band (500 ~ 650 nm) and Pentacene absorption band (550 ~ 700 nm) as the light-absorbing layer. Because the active layer of the pentacene and the lightabsorbing layer are both organic materials, they can be continuous evaporation and has the advantage of low cost. In this project, our team will develop high performance organic phototransistors with the ultra-low operating voltage, high stability and high responsivity in the visible light.
This project is the first time to use SubPc as the visible light absorbing layer of the pentacene-based organic phototransistor, and the development of ultra-thin Cu : Ag metal electrodes to further reduce the thickness of the High-K gate insulator layer, significantly reduce the operating voltage. In summary, this project is developed with high responsivity (~13.2 A/W) in the visible light and low operating voltage (< 2 V) organic light sensing thin film transistors. Which is expected to make an important contribution to the application of low power
consumption organic phototransistor.

論文摘要 1 ABSTRACT 3 致謝 5 目錄 6 圖目錄 10 表目錄 16 第一章 概論 17 1.1 研究背景 17 1.2 研究動機 19 第二章 有機薄膜電晶體介紹 21 2.1 有機半導體介紹 21 2.1.1 有機半導體材料介紹 22 2.1.2 有機半導體Pentacene之特性介紹 25 2.2 有機半導體之傳輸機制 26 2.2.1 載子跳躍模型機制(Hopping Model)[45,46] 27 2.2.2 陷阱補捉與熱釋放模型機制 (Multiple Trapping and Release) 28 2.2.3 偏極子模型機制 (The Polaron Model) [49] 29 2.3 閘極絕緣層介紹 30 2.3.1 閘極絕緣層材料 30 2.3.2 高介電常數(High-K)之介紹 31 2.4 有機薄膜電晶體結構 32 2.5 有機薄膜電晶體之操作模式 34 2.6 電性參數萃取方式 37 2.6.1 載子移動率(Mobility, μ) 37 2.6.2 臨界電壓(Threshold Voltage, Vth) 39 2.6.3 次臨界斜率(Subthreshold Swing, S.S.) 39 2.6.4 開關電流比(On/Off Current Ratio, Ion/Ioff) 40 2.6.5 接觸電阻(Contact Resistance, RC) 41 2.6.6 C-V電特性量測 42 2.7 有機光感測薄膜電晶體 43 2.8 光電流產生機制 44 2.9 有機光感測薄膜電晶體評價參數[63] 45 第三章 雙High-K閘極絕緣層低電壓有機薄膜電晶體之製作方法與流程 48 3.1 基板(Substrate)與閘極(Gate Electrode) 48 3.2 雙High-K閘極絕緣層( High-K Bilayer Gate Dielectric) 49 3.3 主動層 50 3.4 源極/汲極 52 3.5 吸光層 54 3.6 製程機台及分析設備介紹 55 3.6.1 製程機台 56 3.6.2 原子層沉積系統(Atomic Layer Deposition, ALD) 59 3.6.3 半導體參數分析儀(Semiconductor Parameter Analyze) 60 3.6.4 原子力顯微鏡(ATOMIC FORCE MICROSCOPE, AFM) 61 3.6.5 接觸角量測儀(CONTACT ANGLE) 62 3.6.6 電感電容阻抗量測儀(LCR METER) 63 3.6.7 紫外光-可見光光譜儀(Ultraviolet-Visible Spectrometers) 63 3.6.8 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 65 3.6.9 光激發螢光頻譜(Photoluminescence, PL) 66 第四章 薄化Cu:Ag電極搭配雙High-K閘極絕緣層低電壓有機薄膜電晶體實驗結果 67 4.1 使用High-K雙閘極絕緣層元件電特性分析 67 4.2 使用Cu:Ag合金改善薄膜品質以及降低閘極厚度 71 4.2.1 挑選Cu:Ag閘極薄膜最佳厚度參數值 74 4.3 薄化Cu:Ag閘極搭配High-K絕緣層元件特性分析 82 4.4 薄化Cu:Ag閘極搭配High-K絕緣層元件最佳參數 90 第五章 高效率SubPc吸光層搭配低電壓有機光感測薄膜電晶體實驗結果 95 5.1 使用低電壓有機薄膜電晶體元件光電特性 95 5.2 使用SubPc吸光層厚度最佳化 98 5.3 元件於可見光波段之響應度與吸收光譜關係 104 5.4 元件可靠性分析 113 第六章 結論與未來展望 116 6.1 結論 116 6.2 未來展望 118 參考文獻 119

[1] Qiang Ren, Qingsheng Xu, Hongquan Xia, Xiao Luo, Feiyu Zhao, Lei Sun, and Yao Li, Organic Electronics, vol. 51, p. 142 (2017).
[2] Shuo-Huang Yuan, “Effect of Metallic Nanoparticles on the Photodetection Behavior of an Organic Phototransistor,” National Central University, Taoyuan, Taiwan (2016).
[3] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti, and F. H. L. Koppens, Nature Nanotechnol., vol. 7, p. 363 (2012).
[4] B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, Phys. Rev. Lett., vol. 84, p. 4721 (2000).
[5] R. Zakaria, W. K. Lin, and C. C. Lim, Appl. Phys. Exp., vol. 5, p. 082002 (2012).
[6] Wenli Lv , Lili Du , Yingquan Peng , Zhong ZhaoY. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, Applied Physics Letters, vol. 81, p.562 (2002).
[7] R. Schroeder, L. A. Majewski, M. Grell, J. Maunoury, J. Gautrot, P. Hodge, and M Turner, Appl. Phys. Lett., vol. 87, p.113501 (2005).
[8] Bang Joo Song, Kihyon Hong, Woong-Kwon Kim, Kisoo Kim, Sungjun Kim, and
Jong-Lam Lee, J. Phys. Chem. B, vol. 114, p. 14854 (2010).
[9] S. T. Zhang, X. M. Ding, J. M. Zhao, H. Z. Shi, J. He, Z. H. Xiong, H. J. Ding, E. G. Obbard, Y. Q. Zhan, W. Huang, and X. Y. Hou, Appl. Phys. Lett., vol. 84, p.425 (2004).
[10] X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, H. Z. Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard, X. M. Ding, W. Huang, and X. Y. Hou, J. Appl. Phys., vol. 95, p.3828 (2004).
[11] V. Subramanian, J. M. J. Frechent, P. C. Chang, and S. K. Volkman, Proceeding of the IEEE, vol. 93, p. 1330 (2005).
[12] H. Kim, S. Sohn, D. Jung, W. J. Maeng, H. Kim, T.S. Kim, J. Hahn, S. Lee, Y. Yi, and M. H. Cho, Organic Electronics, vol. 9, p. 1140 (2008).
[13] M. W. Shin and S. H. Jang, Organic Electronics, vol. 13, p.767 (2012).
[14] T. Ahn, H. Jung, H. J. Suk, and M. H. Yi, Synthetic Metals, vol. 159, p. 1277 (2009).
[15] A. Tsumura, H. Koezuka, and T. Ando, Appl. Phys. Lett., vol. 49, p. 1210 (1986).
[16] A. Assadi, C. Svensson, M. Willander, and O. Ingans, Appl. Phys. Lett., vol. 53. p. 195 (1988).
[17] J. Paloheimo, E. Punkka, H. Stubb, P.Kuivalainen, in Lower Dimensional Systems and Molecular Devices, Proceedings of NATO ASI, Spetses, Greece (Ed: R. M. Mertzger), Plenum, New York, (1989).
[18] Z. Bao, A. Dodabalapur, and A. J. Lovinger, Appl. Phys. Lett., vol. 69, p. 4108 (1996).
[19] H. Sirringhaus, N. Tessler, R. H. Friend, Science, vol. 280, p. 1741 (1998).
[20] F. Ebisawa, T. Kurokawa, S. Nara, Journal of Applied Physics, vol. 54, p. 3255 (1983).
[21] J. H. Burroughes, C. A. Jones, and R. H. Friend, Nature, vol. 335, p. 137 (1988).
[22] H. Fuchigami, A. Tsumura, and H. Koezuka, Appl. Phys. Lett., vol. 63, p. 1372, (1993).
[23] F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, and P. Alnot, Journal of the American Chemical Society, vol. 115, p. 8716 (1993).
[24] B.Servet, G. Horowitz, S. Ries, O. Lagorsse, P. Alnot, A. Yassar, F. Deloffre, P. Srivastava, R. Hajlaoui, P. Lang, and F. Garnier, Chemistry of Materials, vol. 6, pp 1809 (1994).
[25] A. Dodabalapur, L. Torsi, and H. E. Katz, Science, vol. 268, p. 270 (1995).
[26] C. D. Dimitrakopoulos, B. K. Furman, T. Graham, S. Hegde, and S. Purushothaman, Synthetic Metals, vol. 92, p. 47 (1998).
[27] H. E. Katz, L. Torsi, and A. Dodabalapur, Chemistry of Materials, vol. 7, p. 2235 (1995).
[28] R. Hajlaoui, D. Fichou, G. Horowitz, B. Nessakh, M. Constant, and F. Garnier, Advanced Material, vol. 9, p. 557 (1997).
[29] R. Hajlaoui, G. Horowitz, F. Garnier, A. Arce-Brouchet, L. Laigre, A. Elkassmi, F. Demanze, and F. Kouki, Advanced Material, vol. 9, p. 389 (1997).
[30] J. H. Schön, Ch. Kloc, and B. Batlogg, Organic Electronics, vol. 1, p. 57 (2000).
[31] Y. -Y. Lin, D. J. Gundlach, S. Nelson, and T. N. Jackson, IEEE Electron Device Letters, vol. 18, p. 606 (1997).
[32] C. D. Dimitrakopoulos, A. R. Brown, A. Pomp, Journal of Applied Physics, vol. 80, p. 2501 (1996).
[33] Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, “High Mobility Pentacene Organic Thin Film Transistors,” 54th Annual Device Research Conference Digest, New York, p. 80 (1996).
[34] G. Horowitz, X. Peng, D. Fichou, and F. Garnier, Synthetic Metals, vol. 51, p. 419 (1992).
[35] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming, Applied Physics Letter, vol. 67, p. 121 (1995).
[36] J. Kastner, J. Paloheimo, and H. Kuzmany, in Solid State Sciences, edited by H. Kuzmany, M. Mehring, and J. Fink, Springer, New York, p. 512 (1993).
[37] A. R. Brown, D. M. de Leeuw, E. J. Lous, and E. E. Havinga, Synthetic Metals, vol. 66, p. 257 (1994)
[38] J. G. Laquindanum, H. E. Katz, A. Dodabalapur, and A. J. Lovinger, Journal of the American Chemical Society, vol. 118, p. 11331 (1996).
[39] G. Guillaud, M. Al Sadound, and M. Maitrot, Chemical Physics Letters, vol. 167, p. 503 (1990).
[40] Z. Bao, A. J. Lovinger, and J. Brown, Journal of the American Chemical Society, vol. 120, p. 207 (1998).
[41] H. Fuchigami, A. Tsumura, and H. Koezuka, Applied Physics Letter, vol. 63, p. 1372 (1993).
[42] Ke Zhou, Huanli Dong, Hao-li Zhang and Wenping Hu, Chem. Phys, vol. 16, p. 22448 (2014).
[43] J. M. Shaw, and P. F. Seidler, “Organic Electronic: Introduction,” IBM Journal of Research and Development, vol.45, no.1, p.3 (2001).
[44] M. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban, and S. Forrest, Advanced Material, vol. 10, p. 234 (1998).
[45] E. M. Conwell, Physical Review Letters, vol. 103, p. 51 (1956).
[46] N. F. Mott, Canadian Journal of Physics. vol. 34, p. 1356 (1956).
[47] S. Locci, “Modeling of Physical and Electrical Characteristics of Organic Thin Film Transistors,” Masters Thesis, University of Cagliari (2009).
[48] P. G. Le Comber, and W. E. Spear, Physical Review Letters, vol. 25, p. 509 (1970).
[49] C.W.Kuo, “Properties of Carriers Transportation in Organic Thin Film Transistors,” Masters Thesis, National Cheng Kung University, Tainan, Taiwan (2006).
[50] Y. X. Ma, W. M. Tang, and P. T. Lai, IEEE Electron Device Letters, vol. 39, no. 10, p.1516 (2018).
[51] L. Guo, X. Zhu, S. Sun, C. Cong, Q. Zhou, X. Sun, and Y. Liu, Organic Electronics, vol. 69, p. 308 (2019).
[52] R. Ye, M. Baba, K. Suzuki, Y. Ohishi, K. Mori, Thin Solid Films, vol. 464-465, p. 437 (2004).
[53] D. Kumaki, T. Umeda, and S. Tokito, Applied Physics Letter, vol. 92, p. 093309 (2008).
[54] Y. H. Noh, Y. Park, S. M. Seo, and H. H. Lee, Organic Electronics, vol. 7, p. 271 (2006).
[55] Y. Roichman and N. Tessler, Applied Physics Letter, vol. 80, p. 151 (2002).
[56] I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, IEEE Transactions on Electron Devices, vol. 48, no. 6 (2001).
[57] G. B. Blanchet, C. R. Fincher, and M. Lefenfeld, Applied Physics Letters, vol. 84, no. 2 (2004).
[58] A. R. Brown, C. P. Jarrett, D. M. de Leeuw and M. Matters, Synthetic Metals, vol. 88, p. 37 (1997).
[59] A.Pierre, A.Gaikwad, and A.C.Arias, Nature Photonics, vol. 11, p. 193 (2017).
[60] Richard D. Yang, T. Gredig, Corneliu N. Colesniuc, Jeongwon Park, Ivan K. Schuller, William C. Trogler, and Andrew C. Kummel, Appl. Phys. Lett., vol. 90, p. 263506 (2007).
[61] S. C. Chen, K.H. Wu, J.-X. Li, A. Yabushita, S.H. Tang, C. W. Luo, J.Y. Juang, H.C.Kuo, Y.L. Chueh, Sci. Rep., vol. 5, p. 18354 (2015).
[62] Chen Dongxian, “Metal Oxides as the Buffer Layers for Organic Thin-Film Transistors,” Submitted to Institute of Display College of Electrical and Computer Engineering Nation Chiao Tung University, Hsinchu, Taiwan (2005).
[63] Lin Jingzhe, “Zinc oxide nanoparticle thin films by thermal evaporation and their optical properties,” National Taiwan University of Science and Technology, Taipei, Taiwan (2016).
[64] L. Guo, X. Zhu, S. Sun, C. Cong, Q. Zhou, X. Sun, and Y. Liu, Organic Electronics, vol. 69, p. 308 (2019).
[65] Y. X. Yuan, C. Y. Han, W. M. Tang, and P. T. Lai, IEEE Electron Device Lett., vol. 39, no. 7, p. 963 (2018).
[66] A. Yu, Q. Qi, P. Jiang, and C. Jiang, Synthetic Metals, vol. 159, p. 1467 (2009).
[67] W. C. Shin, H. Moon, S. Yoo, and B. J. Cho, 10th IEEE International Conference on Nanotechnology (2010).
[68] S. Yuan, Z. Pei, H. Lai, C. Chen, P. Li, and Y. Chan, IEEE ELECTRON DEVICE LETTERS, vol. 36, no. 11, p. 1186 (2015).
[69] B. Xu, P. Wang, J. Zhong, 8th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optoelectronic Materials and Devices; 96861Q (2016).
[70] Y. X. Ma, W. M. Tang, and P. T. Lai, IEEE International Conference on Electron Devices and Solid-State Circuits (2018).
[71] Y. X. Ma, W. M. Tang, and P. T. Lai, Applied Physics Letters, vol. 117, no. 14. (2020).
[72] Y. Yousf, A. Jouili, S. Mansouri, L. El Mir, Ahmed Al Ghamdi, Abdullah G. Al Sehemi, F. Yakuphanoglu, Journal of Electronic Materials (2021).
[73] Wei Huang, Xinge Yu, Li Zeng, Binghao Wang, Atsuro Takai, Gabriele Di Carlo, Michael J. Bedzyk, Tobin J. Marks, and Antonio Facchetti, ACS Applied Materials & Interfaces, vol. 13, no. 2, pp. 3445-3453. (2021).
[74] Bochang Li, P.T. Lai, W.M. Tang, International Journal of Hydrogen Energy, vol. 46, no. 29, pp. 16232-16240. (2021).
[75] S. Gorgolis, A. Giannopoulou, D. Anastassopoulos, and P. Kounavis, J. Appl. Phys., vol. 112, p. 013101 (2012).
[76] S. Nam, J. Seo, S. Park, S. Lee, J. Jeong, H. Lee, H. Kim, and Y. Kim, ACS Appl. Mater. Interfaces, vol. 5, p. 1385−1392 (2013).
[77] X. Liu, M. Zhang, G. Dong, X. Zhang, Y. Wang, L. Duan, L. Wang, and Y. Qiu, Organic Electronics, vol. 15, p.1664 (2014).
[78] X. Liu, E. K. Lee, D. Y. Kim, H. Yu, and J. H. Oh, ACS Appl. Mater. Interfaces, vol. 8, p. 7291 (2016).
[79] Suman Kalyan Samanta, Inho Song, Jong Heun Yoo, and Joon Hak Oh, ACS Appl. Mater. Interfaces, vol. 10, p.32444 (2018).
[80] Chulyeon Lee, Hyemi Han, Myeonghun Song, Jooyeok Seo, Hwajeong Kim, and Youngkyoo Kim, IEEE Journal of Selected Topics in Quantum Electronics, vol. 24, no. 2, p.1 (2018).
[81] Qian-Min Wang and Zhi-Yong Yang, Carbon, vol. 138, p. 90 (2018).
[82] Y. Wang, L. Zhu, T. Wang, Y. Hu, Z. Deng, Q. Cui, Z. Lou, Y. Hou, and F. Teng, Organic Electronics, vol.62, p. 448 (2018).
[83] Guiheng Wang, Kaiqiang Huang, Zhen Liu, Yuchang Du, Xiaohong Wang, Hongbo Lu, Guobing Zhang, and Longzhen Qiu, ACS Appl. Mater. Interfaces, vol. 10, p.36177 (2018).
[84] Y. Che, G. Zhang, Y. Zhang, X. Cao, M. Cao, Y. Yu, H. Dai, J. Yao, Optics Communications, vol. 425 p. 161 (2018).
[85] K. Yeliu, J. Zhong, X. Wang, Y. Yan, Q. Chen, Y. Ye, H. Chen, and T. Guo, Organic Electronics, vol. 67, p. 200 (2019).
[86] Erwin Kessels, “ALD presentation Vacuum Expo,” Technische Universiteit Eindhoven.
[87] W.M.M. Kessels and M. Putkonen, MRS Bulletin, vol. 36, 11, p. 907 (2011).
[88] Liu, S.-., Su, T.-., Chang, P.-., Yeh, T.-., Li, Y.-., Huang, L.-., Chen, Y.-. & Lin, C., Organic Electronics, vol. 31, pp. 240-246, (2016).
[89] Tomasz Stefaniuk et al., IEEE Electron Device Lett., vol. 53, no. 10, p. 237-241, (2014).
[90] Z. Tao, X. Liu, W. Lei, and J. Chen, Materials Letters, vol. 228, no.1, p. 451, (2018).
[91] Cheng Zhang et al., ACS Applied Materials & Interfaces, vol. 11, no. 30, p. 27216-27225, (2019).
[92] A. Pierre, A. Gaikwad, and A. C. Arias, Nature Photonics, vol. 11, p. 193, (2017).

無法下載圖示 全文公開日期 2026/08/23 (校內網路)
全文公開日期 2026/08/23 (校外網路)
全文公開日期 2026/08/23 (國家圖書館:臺灣博碩士論文系統)
QR CODE