簡易檢索 / 詳目顯示

研究生: 吳政威
Cheng-Wei Wu
論文名稱: Inconel 52M覆銲層厚度與微觀組織對超音波訊號影響
Effects of Inconel 52M Cladding Thickness and Microstructure on Ultrasonic Signal
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 鄭偉鈞
Wei-Chun Cheng
黃育熙
Yu-Hsi Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 95
中文關鍵詞: 52M 覆銲斜束式投捕法彈性異向性晶粒變形析出物
外文關鍵詞: 52M cladding, Angle Beam Pitch-Catch Method, elastic anisotropic, lattice distortion, precipitates
相關次數: 點閱:292下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以316L不銹鋼為底材,銲料使用ER308L和Inconel 52M,
透過 GTAW 銲接方法,採用 Temper bead 銲接技術製作不同覆銲厚度
之超音波檢測階梯規塊。使用超音波檢測,透過斜束式投捕檢測法檢
測不同覆銲層厚度超音波訊號位置,探討不同覆銲層厚度與微觀組織
對超音波訊號影響。
實驗結果顯示,52M 銲接組織凝固取向使覆銲層具有彈性異向
性特性,造成超音波探頭在同平面不同方向檢測,超音波折射角度不
同。在超音波探頭音近場區與聚焦區,受覆銲層內富 Nb、Ti 之化合
物溶解回基地組織影響,使晶粒變形降低音速,覆銲層內超音波音速
變慢,造成實際路徑呈現弧形。覆銲層長晶粒呈一傾斜方向,使遠場
發散範圍內訊號受到晶界析出物影響程度不同,導致覆銲層越厚訊號
位置越往探頭偏移。


This study used the Inconel 52M and ER308L to clad SUS 316L
stainless steel, using Gas Tungsten Arc Welding (GTAW). The block for
ultrasonic adopting the welding techniques of Temper bead to produce
different thickness of the block for Ultrasonic Testing. Detecting the
ultrasonic signal of different thicknesses of welding layers by Angle Beam
Pitch-Catch Method to research the effect caused by the different
thicknesses and microstructure.
Experimental results showed that 52M cladding was elastic anisotropic
due to solidification orientation, causing the ultrasonic wave to have
different refraction angles in different directions on the same surface. In
the near-field region and focal zone, the rich compounds of Nb and Ti
dissolved into the matrix, leading to the decrease of the acoustic velocity
caused by the lattice distortion, causing the real path to be curved. The
cladding grains were inclined so that the divergence ranges of signal in the
far-field region were affected by the grain boundary precipitations, causing
the thicker the cladding layer is, the more the signal is shifted to the probe.

第一章 前言 1 第二章 文獻回顧 3 2.1 材料性質 3 2.1.1 Inconel 52M 3 2.1.2 不銹鋼 4 2.2 鎢極氣體保護電弧銲 5 2.2.1 原理 5 2.2.2 GTAW銲接參數 6 2.3 覆銲工法 8 2.4 銲接論理 10 2.4.1 組成過冷與凝固 10 2.4.2 銲接結構 14 2.5 異質金屬銲接 15 2.6 超音波檢測 16 2.6.1 超音波檢測 16 2.6.2 超音波傳播原理 17 2.6.3 超音波音速與折射 19 2.6.4 超音波音場與衰減 20 2.7 超音波檢測與微觀結構之研究 21 2.7.1 晶粒變形對超音波影響 21 2.7.2 相速度與群速度 22 2.7.3 方向性對超音波影響 24 2.7.4 慢度面 26 2.8 訊號呈像法 29 第三章 實驗方法 32 3.1 實驗流程 32 3.2 試片準備 33 3.3 鎢極氣體保護電弧銲 34 3.4 銲接程序 35 3.4.1 銲接方法 35 3.4.2 銲接流程及加工 35 3.5 超音波檢測 38 3.6 微硬度試驗 41 3.7 微觀分析方法與設備 42 第四章 實驗結果 43 4.1 覆銲件 43 4.2 銲後微觀組織及性質 44 4.2.1 316L不銹鋼熱影響區 44 4.2.2 308L不銹鋼緩衝層 46 4.2.3 52M合金覆銲層 51 4.3 超音波檢測 56 4.3.1 衰減 56 4.3.2 斜束式投捕法檢測 58 4.3.3 直束式回波法檢測 62 4.3.4 慢度面繪製 64 4.4覆銲層造成超音波訊號位移 71 4.4.1 覆銲層音速變化 71 4.4.2 衰減係數變化 74 第五章 結論 78 參考文獻 79

[1] S. Kou, "Welding Metallurgy, 2nd ed. Hoboken," N.j.: Wiley Inteererscience, 2002, pp. xiv, 461.
[2] K. Laha, K. S. Chandravathi, P. Parameswaran, S. Goyal, and M. D. Mathew, "A Comparison of Creep Rupture Strength of Ferritic/Austenitic Dissimilar Weld Joints of Different Grades of Cr-Mo Ferritic Steels," Metallurgical and Materials Transactions A, journal article vol. 43, no. 4, pp. 1174-1186, 2012.
[3] S. Wu, H. Jin Y. Sun, and L. Cao, "Critical cleavage fracture stress characterization of A508 nuclear pressure vessel steels," International Journal of Pressure Vessels and Piping, vol. 123-124, pp. 92-98, 2014.
[4] G. Bao, K. Shinozaki, S. Iguro, M. Inkyo, M. Yamamoto, Y. Mahara, and H. Watanabe, "Stress corrosion cracking sealing in overlaying of Inconel 182 by laser surface melting," Journal of Materials Processing Technology," vol. 173, no. 3,pp. 330-336, 2006.
[5] T. Lant, D. L. Robinson, B. Spafford, and J. Storesund, "Review of weld repair procedures for low alloy steels desined to minimise the risk of future cracking," International Journal of Pressure Vessels and Piping, vol. 78, no. 11-12, pp. 813-818, 2001.
[6] 王振欽,"銲接學",登文書局,民國74年。
[7] Charles J. Hellier, "Handbook of Nondestructive Evaluation," The McGraw-Hill companies,'' 2001, pp. xiv,603 .
[8] J. Szilard, "Ultrasonic Testing: non-conventional testing techniques," N.j.: Wiley Inteererscience, 1982, pp. xiv, 626.
[9] Olympus NDT, "Ultrasonic Transducers Technical Notes," pp. 40-41, 2006.
[10] M. Sireesha, S. K. Albert, V. Shankar, and S. Sundaresan, "Nondestructive characterization of microstructures and determination of elastic properties in plain carbon steel using ultrasonic measurement," Journal of Nuclear Materials, vol. 279, no. 1, pp. 65-76, 2000.
[11] P. Palanichamy, A. Joseph, T. Jayakumar, and B. Baldev Raj, "Ultrasonic velocity measurements for estimation of grain size in austenitic stainless stell ," NDT&E International, vol. 28, no. 3, pp. 179-185, 1995.
[12] H. Gebru, "Assessment of ultrasonic inspection techniques and models for nuclear power plant components," Imperial College London, pp. xiv, 242, 2015.
[13] B.A. Auld, "Acoustic Fields and Wave in Soilds," 1973, pp. xiv, 414.
[14] T. Seldis, A. Joseph, T. Jayakumar, and B. Baldev Raj, "Ultrasonic properties of reactor pressure vessel strip cladding," Non-Destructive Testing and Condition Monitoring, vol. 51, no. 1, pp. 601-605, 2009.
[15] C. Lane, "The Development of a 2D Ultrasonic Array Inspection for Single Crystal Turbine Blades," Spring International Publishing, 2013, pp. 13-39.
[16] R. J. Hudgell, "Handbook on the Ultrasonic Examinatio of Austenitic Clad Steel Components," Office for Offcial Publications of the European Communities, pp. xiv, 62, 1994.
[17] ASEM Boiler and Pressure Vessel Standards Committees, Subgroups, and Working Groups, "Rule for Inservice Inspection of Nuclear Power Plant Components," ASME International, pp. xiv, 500, 2010.
[18] Y.M. Cheong, J.H. Kim, and H.K. Jung, "Dynamic Elastic Constants of Weld HAZ of SA 508 CL.3 Steel Using Resonant Ultrasonic Spectroscopy," IEEE Trans. Ultrason Ferroelectr. Freq , vol. 47, no. 3, pp. 559-564, 2000.
[19] K. Sakamoto, T. Furukawa, I. Komura, Y. Kamiyama, and T. Mihara, "Study on the Ultrasound Propagation in Cast Austenntic Stainless Steel," E-Journal of Advanced Maintenance, vol. 4, no. 1, pp. 5-25, 2012.
[20] B. Chassignole, R. EI Guerjouma, M.-A. Ploix, and T. Fouquet, "Ultrasonic and structural characterization of anisotropic austenitic stainless steel welds: Towards a higher reliability in ultrasonic non-destructive testing," NDT&E International, vol. 43, no. 4, pp. 273-282, 2010.
[21] X. Wei, M. Xu, Q. Wang, M. Zhang, W. Liu, J. Xu, J. Chen, H. Lu, and C. Yu, "Effect of local texture and precipitation on the ductility dip cracking of ERNiCrFe-7A Ni-based overlay," Material and Design, vol. 110, no. 15, pp. 90-98, 2016.
[22] S. A. Thomas, R. B. Hixson, M. Cameron Hawkins, and O. T. Strand, "Wave speeds in single and polycrystalline copper," HVIS Proceeding, vol. 15, 2019.
[23] A. Kumar, V. Shankar, T. Jayakumar, K. Bhanu Sankara Rao, and B. Raj, "Correlation of microstructure and mechanical properties with ultrasonic velocity in the Ni-based superalloy Inconel 625," Philosophical Magazine A, vol. 82, no. 13, pp. 2529-2545, 2009.
[24] A. Kumar, T. Jayakumar, and B. Raj, "Influence of precipitation of intermatllics on Young's modulus in nickel and ziconium base alloy," Philosophical Magazine A, vol. 86, no. 9, pp. 579-587, 2006.
[25] W. Mo, S. Lu, D. Li, and Y. Li, "Effect of filler metal composition on the microstructure and mechanical properties for ER NiCrFe-7 mutil-pass weldments," Material Science and Engineering: A, vol. 582, no. 10, pp. 326-337, 2013.
[26] P. Peterzak, K. Kowalski, and M. Blicharski "Analysis of Phase Transformations in Inconel 625 Alloys during Annealing," ACTA PHYSICA POLONICA A, vol. 130, no. 4, pp. 1041-1044, 2016.
[27] S. Li, Q. Wei, Y. Shi, Z. Zhu, and D. Zhang, "Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting ," Journal of Material Science & Technology, vol. 31, no. 9, pp. 946-952, 2015.
[28] S. Li, Q. Wei, Y. Shi, Z. Zhu, and D. Zhang, "Characterization of Material Properties of 2xxx Series Al-Alloys by Non Destructive Testing Techniques," Journal of Nondestructive Evaluation, vol. 31, no. 1, pp. 17-33, 2012.
[29] J. Stella, J. Cerezo, and E. Rodriguez, "Characterization of the sensitization degree in the AISI 304 stainless steel using spectral analysis and conventional ultrasonic techniques," NDT&E International, vol. 42, no. 4, pp. 267-274, 2009.
[30] T. Seldies, "Measurement of the intrinsic attenuation of longitudinal wave in anisotropic material from uncorrected raw data," Ultrasonics, vol. 53, no. 7, pp. 1259-1263, 2013.
[31] P.E. Lhuillier, B. Chassignole, M. Oudaa, S.O. Kerherve, F. Rupin, and T. Fouquet, "Investigation of the ultrasonic attenuation in anisotropic weld materials with finite element modeling and grain-scale material description," Ultrasonics, vol. 78, pp. 40-50, 2017.
[32] E. P. Papadakis, "Revised Grain-Scattering Formulas and Tables," The Journal of the acoustical society of america, vol. 37, no. 4, pp. 703, 1965.
[33] 張育賢,"冷卻條件對SUS 316L被覆Inconel 52M之機械與腐蝕性質影響",國立臺灣科技大學,民國99年。
[34] R. F. Ferreria, M. S. Motta, L. S. Gomes, M. Ogawa, and A. R. Pimenta, "Technical Evaluation of Ultrasound Phased Array Inspection in Welded Joint of AISI 304L Austenitic Stainless Steel," Journal of Nondestructive Evaluation, vol. 31, no. 1, pp. 17-33, 2014.

QR CODE