簡易檢索 / 詳目顯示

研究生: 林駿翔
Chun-Hsiang Lin
論文名稱: SN490B結構用鋼GMAW銲件顯微組織與織構之研究
Studies on Microstructure and Texture of SN490B Construction Steel GMAW Weldment
指導教授: 蔡顯榮
Hsieng-Lung John Tsai
口試委員: 陳生金
Sheng-Jin Chen
陳正誠
Cheng-Cheng Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 68
中文關鍵詞: 結構用鋼氣體金屬電弧銲銲道熱影響區衝擊韌性硬度顯微組織織構背向散射電子繞射
外文關鍵詞: construction steel, GMAW, weldment, HAZ, impact toughness, hardness, microstructure, texture, EBSD
相關次數: 點閱:266下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究SN490B結構用鋼,經GMAW銲接後,銲道橫截面之硬度變化、熱影響區之衝擊韌性及銲道、熱影響區、母材的顯微組織及織構。
實驗結果顯示,粗晶粒熱影響區的硬度最高但衝擊韌性低,破裂面呈現劈裂;顯微組織在銲道以晶界肥粒鐵PF(G)、肥粒鐵側板FS(SP)及針狀肥粒鐵AF為主,粗晶粒熱影響區以上變韌鐵UB為主;在多重銲道中,前銲道組織會受後續銲道再熱影響再結晶而使晶粒細化;母材在{110}的極圖上呈現較弱的{110}纖維織構,低溫退火區無特定織構且晶向也沒有集中在特定方位上。再熱細晶粒區的晶粒成長方向呈現隨機且均勻分佈。在ND的晶向分佈圖中,粗晶粒熱影響區的晶粒在[101]至[112]之間的晶向成長較快,熔合區得晶粒則偏向[001],銲道區的晶粒則偏向[111],從{110}的極圖上粗晶粒熱影響區及銲道區整體上呈現{001}、{112}及{111}的混合織構。


The microstructure and texture of SN490B construction steel GMAW weldment was studied.
As a result, the hardness of GCHAZ was highest and the impact toughness was lowest than that of other. The fracture surface of impact specimen was cleavage. The microstructure of weld metal was consisted of grain boundary ferrite PF(G), ferrite side plate FS(SP) and acicular ferrite AF. The microstructure of GCHAZ was upper bainite FS(UB). The grain of GCHAZ and weld metal had been finer due to the effect of the following welding. The {110} pole figure of base metal has weak {110} fiber texture and the texture of the temper zone and the reheated grain-refined zone were random. The grain was easily to growth with crystal orientation between [101] and [112] for GCHAZ, [001] for fusion zone and [111] for weldment shown on orientation map of ND. The {110} pole figure of GCHAZ and weldment has {001}, {112} and {111} mixed texture。

中文摘要...I Abstract...II 誌 謝...III 目 錄...IV 表 索 引...VII 圖 索 引...VIII 第一章、前言...1 1.1 研究背景...1 1.2 研究目的...1 第二章、文獻回顧...3 2.1 SN490B結構用鋼...3 2.2 銲道及熱影響區...4 2.2.1 單一銲道...4 2.2.2 多重銲道...5 2.2.3 熱影響區韌性的控制因素...6 2.3 破壞模式...7 2.4 背向散射電子繞射分析原理...8 2.5 EBSD在銲接顯微組織上的織構分析...9 2.5.1 鑄造織構...10 2.5.2 變形織構...11 2.5.3 再結晶織構...11 第三章、實驗方法...17 3.1 銲口製作...17 3.2 GMAW銲接...17 3.3 材料及試片處理...18 3.3.1 硬度試片...18 3.3.2 衝擊試片...19 3.3.3 金相試片...19 3.3.4 EBSD試片...20 3.4 分析儀器及試驗設備...21 3.5 硬度試驗...21 3.6 衝擊試驗...22 3.7 金相觀察...22 3.8 掃描式電子顯微鏡(SEM)觀察...22 3.9 背向散射電子繞射(EBSD)觀察...22 第四章、結果與討論...28 4.1 硬度試驗...28 4.2 衝擊試驗及其破斷面觀察...28 4.3 金相組織觀察...29 4.4 EBSD織構分析...30 第五章、結論...49 參考文獻...51 作者簡介...55 表2-1顯微組織分類[9]...12 表2-2顯微組織影響韌性的因素[18]...13 表3-1東和鋼鐵生產之SN490B鋼料化學成分(鋼液分析)[2]...23 表3-2銲接參數...23 表4-1銲道硬度試驗數據...31 表4-2 衝擊數據...32 圖2-1含碳量0.15%的碳鋼銲道及熱影響區顯微組織與尖峰溫度及鐵碳平衡圖之對映圖[5][12]...14 圖2-2合金添加量、冷卻速率、氧含量及沃斯田鐵晶粒尺寸影響碳鋼銲道顯微組織變化示意圖[8]...14 圖2-3多重銲道中的粗晶粒熱影響區[12][13][14]...15 圖2-4鎳在20kV加速電壓下的繞射圖形[22][23][25]...15 圖2-5鎳在20kV加速電壓下的繞射圖形附加米勒指標資訊[22][23][25]...16 圖3.1實驗流程圖...24 圖3-2結構用鋼SN490B 母材金相組織立體圖...25 圖3-3銲口設計圖...26 圖3-4試片規劃...26 圖3-5Charpy 衝擊試片規格...27 圖3-6銲道接頭衝擊試片取樣位置...27 圖4-1銲道橫切面硬度趨勢...33 圖4-2粗晶粒熱影響區衝擊破裂面...35 圖4-3單一銲道橫切面金相,從圖片右上到左下分別為銲道區、融合區、晶粒成長區及再結晶區。...36 圖4-4銲道橫切面金相,晶界肥粒鐵沿原沃斯田鐵晶界生長排列成肥粒鐵脈絡。...36 圖4-5銲道縱切面金相,晶界肥粒鐵沿原沃斯田鐵晶界生長排列成環狀,與銲道橫切面金相之肥粒鐵脈絡對應,原沃斯田鐵呈柱狀結構。...37 圖4-6銲道橫切面金相,晶界肥粒鐵生長方向朝最大溫度梯度方向前進,肥粒鐵側板往原沃斯田鐵晶粒內成長,型態呈現鋸齒狀。...37 圖4-7針狀肥粒鐵成核在非金屬夾雜物上,交互穿梭生長佈滿整個原沃斯田鐵晶粒,整體呈現編織結構型態。...38 圖4-8粗晶粒熱影響的上變韌鐵組織...38 圖4-9上變韌鐵的特徵是肥粒鐵有排列性且碳化物聚集在排列的肥粒鐵之間,呈現束狀結構。...39 圖4-10多重銲道橫切面金相,粗晶粒熱影響區的部分粗晶粒受後續銲道再熱影響再結晶,形成再熱細晶粒。...39 圖4-11多重銲道橫切面金相,再熱細晶粒左右兩邊為上變韌鐵組織,右邊的上變韌鐵較左邊的上變韌鐵為大。...40 圖4-12多重銲道橫切面金相,銲道區受後續銲道再熱影響再結晶,形成再熱細晶粒。...41 圖4-13母材金相,白色部分為肥粒鐵、黑色部分為波來鐵,組織呈帶狀。...41 圖4-14低溫退火區金相42 圖4-15部份變態區金相。...42 圖4-16母材及低溫退火區的Pattern Quality Map...43 圖4-19再熱細晶粒區的Pattern Quality Map及Orientation Map...46 圖4-20粗晶粒熱影響區及銲道的Pattern Quality Map及Orientation Map...47 圖4-21再熱細晶粒區、粗晶粒熱影響區及銲道的極圖與反極圖...48

[1] RWK Honeycombe, ”Steels-Microstructure and Properties”, Edward Arnold, (1981).
[2] 黃志榮,「硫含量對A992、SN490B及SN490C結構用鋼之機械性質影響」,國立台灣科技大學碩士論文,民國九十五年。
[3] S.H. Wang and C.C. Chiang, ”Effect of microstructure texture on the creep behavior”, Journal of Materials Science 37, pp. 3733-3737, (2002).
[4] S.H. Wang, C.C. Chiang and S.L.I. Chan, “Effect of initial microstructure on the creep behavior of TMCP EH36 and SM490C steels”, Material Science and Engineering A344, pp. 288-295, (2003).
[5] K. Easterling, “Introduction to the Physical Metallurgy of Welding”, Butterworths, (1983).
[6] Sakino Yoshihiro, Horikawa Kohsuke and Kamura Hisaya, “Welding Heat-input Limit of Rolled Steels for Building Structures based on Simulated HAZ Tests”, Trans. JWRI, Vol. 30, No. 1, (2001).
[7] Th.J. Van Adrichem and J. Kas, “Calculation, Measurement and Simulation of Weld Thermal Cycles”, Smitweld N.V., Nijmegen, The Netherlands.
[8] H. K. D. H. Bhadeshia and L.E. Svensson, “Modelling the Evolution of Microstructure in Steel Weld Metal, Mathematical Modelling of Weld Phenomena”, H. Crejak and K.Easterling, Ed., The Instituent of Materials, (1993).
[9] International Institute of Welding, “Guide to the Light Microscope Examination of Ferrite Steel Weld Metals”, Doc. No. IX-1533-88, (1998).
[10] M. Eroğlu, M. Aksoy and N. Orhan, “Effect of coarse initial grain size on microstructure and mechanical properties of weld metal and HAZ of a low carbon steel”, Material Science and Engineering A269, pp.59-66, (1999).
[11] Es-Souni M. and Beaven P.A., “Microanalysis of Inclusion/Matrix Interfaces in Weld Metals”, GKSS 89/E/58, (1989).
[12] D. Francois, F.M. Burdekin, “State of the art resume on significance of local brittle zones”, Welding in the World 41, pp. 138-143, (1998).
[13] T. Haze and S. Aihara, “Influence of Toughness and Size of Local Brittle Zones on HAZ Toughness of HSLA Steels”, Seventh International Conference on Offshore Mechanics and Arctic Engineering, Houston, (1998).
[14] N. Yurioka, “TMCP steels and their welding”, Welding in World/Le Soudage dans le Monde, Vol. 35, No. 6, pp. 375-390, (1995).
[15] MIKAMI Yoshiki, MOCHIZUKI Masahito, HASHIBA Yuji, HASEGAWA Toshiei, OHKITA Shigeru and TOYODA Masao, “Evaluation of microstructure phase fraction and hardness distribution of weld metal subjected to Multiple Thermal Cycles. Evaluation of weld hardness distribution by numerical simulation of welding thermal cycles and microstructure phase fractions (2nd report)”, Welding International , 20 (9), pp. 684-691, (2006).
[16] F. MATSUDA, Z. LI, P. BERNASOVSKY, K. ISHIHARA, and H. OKADA, “AN INVESTIGATIONOF THE BEHAVIOUR OF M-A CONSTITUENT IN SIMULATED HAZ OF HSLA STEELS”, DOC.NO. IX-B-1591-90, INTERNATIONAL INSTITUTE OF WELDING, (1990).
[17] P.L. Harrison and P.H.M. Hart, “Relationships between HAZ Microstructure and CTOD Transition Behaviour in Multipass C-Mn Steel Welds”, Recent Trends In Welding Science and Technology, S.A. David and J.M. Vitek, ED., ASM International, (1990).
[18] Shuji Aihara, “Steel plate for ships and other welded structures having high toughness of HAZ and base metal: fundamental studies and developments”, Nippon Steel Corporation, Japan, (2006).
[19] Victor Kerlins, McDonnel Douglas Astronantics Company Austin Phillips, Metallurgical Consultant, “Modes of Fracture”, ASM Handbook Vol. 12, pp. 33-140, (1992).
[20] Hai Qiu, Manabu Enoki, Yoshiaki Kawaguchi and Teruo Kishi, “A model for the static fracture toughness of ductile structural steel”, Engineering Fracture Mechanical 70, pp. 599-609, (2003).
[21] H. Qiu, H. Mori, M.Enoki and T. Kishi, “Effect of welding thermal cycle and cold working on the ductility of SN490 steel under low and high-speed loading”, Material Science and Engineering A316, pp. 217~223, (2001).
[22] 黃宏勝、林麗娟,「FE-SEM/CL/EBSD分析技術簡介」,工業材料雜誌 201期,第 99~108頁,民國九十二年。
[23] S. Courtas, M. Gregoire, X. Federspiel, N. Bicais-Lepinay and C. Wyon, “Electron BackScattered Diffraction(EBSD)use and applications in newest technologies development”, Microelectronics Reliability 46, pp. 1530-1535, (2006).
[24] David P., “Textured Structure”, Metallography and Microstructures, Vol. 9, ASM Handbook, ASM International, pp. 215-226, (2004).
[25] 許樹恩、吳泰伯,「X光繞射原理與材料結構分析」,新竹縣,中國材料科學學會發行,第429~432頁,民國八十二年。
[26] 白志華,「雙相不銹鋼銲接與熱模擬實驗後顯微織構變化之研究」,國立中山大學碩士論文,民國九十二年。
[27] F. J. G. Landgraf, T. Yonamine, R.Takanohashi, F. Q. Silva, J. P. V. Tosetti, F. Beneduce Neto, E. Albertin, V. N. G. Mazzarella, I. G. S. Falleiros and M.Emura, “Magnetic properties of silicon steel with as-cast columnar structure”, Journal of Magnetism and Magnetic Materials 254-255, pp. 364-366, (2003).
[28] P.G. Xu, F.Yin and K. Nagai, “Solidification cooling rate and as-cast texture of low-carbon steel strips”, Materials Science and Engineering A441, pp. 157-166, (2006).
[29] Cabral M. H. C., Candido F. S., Viana C. S. C., Blas J. G. and Pereira L. C., “EBSD Characterization of a low carbon steel”, Acta Microscopica, Vol.12, Supplement C, pp. 295, (2003).

QR CODE