簡易檢索 / 詳目顯示

研究生: 邱肇瑋
Chao-wei Chiu
論文名稱: 錫與鎳鎢合金之界面反應
Interfacial Reactions between Sn and Ni-W Alloys
指導教授: 顏怡文
Yee-wen Yen
口試委員: 周賢鎧
Shyan-kay Jou
施劭儒
Shao-Ju Shih
林士剛
Shih-kang Lin
吳子嘉
Albert T. Wu
陳志銘
C.-M. Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 108
中文關鍵詞: 固體/固體及液體/固體之界面反應錫/鎳鎢合金系統多層結構介穩相非晶結構
外文關鍵詞: solid/solid and liquid/solid reaction couple, Sn/Ni-xW systems, multilayer structure, metastable phase, amorphous structure
相關次數: 點閱:280下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究先行將Sn與Ni-1.0 wt.% W(Ni-1W)、Ni-5.0 wt.% W(Ni-5W)以及Ni-7.5 wt.%W(Ni-7.5W)基材在270oC下迴銲10分鐘後,再將反應偶置於160、210 以及225oC下進行固/固界面反應,以及240oC以上進行液/固介面反映,觀察界面所生成之介金屬相(IMC)種類與形態、並探討IMC反應機制與其成長動力學等現象。實驗結果顯示,在Sn/Ni-1W反應偶中僅生成Ni3Sn4相的生成,且IMC的厚度隨反應時間和溫度增加,與鎢含量減少加而增厚。Sn/Ni-5W反應偶則依序生成一白色層狀之Ni-Sn-W三元相(T相)與Ni3Sn4相;且在210oC下時效400小時後,會於Ni3Sn4相中會有片段狀的T相分佈。而Sn/Ni-7.5W反應偶於界面處依序生成T相與Ni3Sn4相。在210oC下反應時間超過100小時後,則出現T1/Ni3Sn4/T2/Ni3Sn4的交替結構。液/固反應也在鎢含量大於5wt.%時會生成T相,經由穿透式電子顯微鏡觀察T1以及T2等三元相,發現其晶相結構並不明顯,推測為奈米結晶的結構。


Solid/solid and liquid/solid reaction couple techniques were applied to investigate the interfacial reactions in Sn/Ni-xW systems (x=0, 1.0 5.0 and 7.5 wt%) at 160 to 300oC for various reaction times. The results indicated that only the Ni3Sn4 phase was formed in the Sn/Ni-1wt%W couple. The Ni3Sn4 phase and ternary Ni37-42Sn48W10-15 phase (T1) were formed at the Sn/Ni-5W interface. After 400-h aging at 210oC, the Ni26-31Sn59W10-15 phase (T2) with a discontinuous layered structure was formed in the Ni3Sn4 layer. The results in the Sn/Ni-7.5W couple were similar to that in the Sn/Ni-5W couple. A multilayer structure, T1/Ni3Sn4/T2/Ni3Sn4 was formed after 100-h aging at 210oC. When the reaction temperature was increased to 225oC,a new ternary phase with composition of Ni5-15Sn50W35-45 (T3) was formed. T1, T2 and T3 phases were likely to be metastable phases with an amorphous structure composed of nanocrystal grains. The liquid/solid-stated interfacial reactions in the Sn/Ni-xW couples are different from those in the solid-stated reactions. When the W content was greater 5wt%, the T1 phase was formed between the Ni3Sn4 phase and Ni-xW alloys. According to a transmission electron microscopy analysis results, the T1, T2 and T3 phases were likely to be metastable phases with an amorphous structure composed of nanocrystal grains.

Abstract I Table of Contents III List of Figure V List of Table IX Chapter 1 Introduction 1 1.1General back ground information 1 Chapter 2 Literature review 6 2.1 Interfacial reactions 6 2.2 Diffusion theory 8 2.3 Element added into Ni-based substrate: 11 2.4 Interfacial reaction between Sn and Ni-W alloy: 16 2.5 Solid state amorphization 20 Chapter 3 Experimental 23 3-1 Preparation of Ni-W substrates. 23 3-2 Preparation of Sn/Ni-W reaction couples 23 3-3 Metallographic procedure 25 3-4 Interface observation and analysis 26 Chapter 4 Results & Discussion 28 4-1 Solid/Solid Interfacial Reaction between Sn and Ni-xW alloy 30 4-1.1 Sn/Ni-xW interfacial reaction at 160-225oC(x=1) 30 4-1.2 Sn/Ni-xW interfacial reaction at 160-225oC(x=5) 34 4-1.3 Sn/Ni-xW interfacial reaction at 160-225oC(x=7.5) 39 4-1.4 The reaction mechanism of different W content and temperature in Sn/Ni-xW solid/solid reaction couples 50 4-2 Liquid/Solid Interfacial Reaction between Sn and Ni-xW alloy 57 4-2.1 Sn/Ni-xW interfacial reaction at 240-300oC(x=1) 57 4-2.2 Sn/Ni-xW interfacial reaction at 240-300oC(x=5) 62 4-2.3 Sn/Ni-xW interfacial reaction at 240-300oC(x=7.5) 70 4-2.4 The reaction mechanism of different W content and temperature in Sn/Ni-xW liquid/solid reaction couples 79 Chapter 5 Conclusion 83 Chapter 6 Attachment 85 Reference 96

[1] D. R. Frear, J. W. Jang, J. K. Lin, and C. Zhan, Journal of Materials, 53 (2001) 28-38.
[2] “WEEE Regulations”, EU-Directive 96/EC (2002).
[3] “RoHS Regulations”, EU-Directive 96/EC (2002).
[4] http://www.visiontech21.com/bbs/print.php?kind=pds&mode=print&page=2&num=9 UBM
[5] C. C. Chen, S. W. Chen and C. H. Chang, Journal of Applied Physics, 103 (2008) 063518.
[6] C. C. Chen, S. W. Chen, C. Y. Kao, Journal of Electronic Materials, (5) 35 (2006) 922-928.
[7] S. W. Chen, C. C. Chen, C. H. Chang, Scripta Materialia, 56 (2007) 453-456.
[8] D. M. Jang and J. Yu, Journal of Materials Research, 26 (2011) 889-895.
[9] K. Chen, C. Liu, D. C. Whalley and D. A. Hutt, 2005 International Symposium on Electronics Materialsand Packaging (EMAP 2005), December 11 14, (2005) 107-111.
[10] Y. Yang, J. N. Balaraju, Z. Tsakadze, Z. Chen, Electronics Packaging Technology Conference, 13 (2011) 44-48.
[11] C. S. Chew, A. S. M. A. Haseeb, M. R. Johan, Journal of Materials Science Materials in Electronics, 22 (2011) 1372-1377.
[12] C. S. Chew, A. S. M. A. Haseeb and M. R. Johan, 35th International Electronic Manufacturing Technology Conference, (2012).
[13] C. Li, A. Hu, M. Li, J. Sun, International Conference on Electronic Packaging Technology & High Density Packaging, 978-1-4673-1681-1112, (2012).
[14] Y. Liu, A. Hu, T. Luo and M. Li, Journal of Materials Science: Materials in Electronics, 24 (2012) 1037-1044.
[15] J. Liang, T. Luo, A. Hu, M. Li, Microelectronics Reliability (2013) (in press).
[16] F. N. Rhines, Phase Diagrams in Metallurgy, McGraw & Hall, New York (1956).
[17] ASM Handbook Vol. 3 Alloy Phase Diagrams, Ed. By H. Baker, ASM International, Materials Park, Ohio. (1992).
[18] Alloy Phase Diagrams, Vol. 3, ASM Handbook, ASM International, (1992), p 2.312 2.322.
[19] 黃育智,不同尺寸電子銲點中之相生成與相變化,國立清華大學化學工程研究所博士論文。(2010).
[20] C. L. Tsao and S. W. Chen, Journal of Materials Science, 30 (1995) 5215-5222.
[21] J. Shen, Y. C. Chan, S. Y. Liu, Acta Materialia, 57 (2009) 5196-5206.
[22] H. Alimadadi, M. Ahmadi, Mater & Design, 30 (2009) 1356–1361.
[23] R. B. Schward, W. L. Johnson, Physical Review Letters, 51 (1983) 415-418.
[24] W. S. Lai, B. X. Liu, Computational Materials Science, 14 (1999) 163-168.
[25] R. Benedictus, C. Traeholt, A. Bottger, E. J. Mittemeijer, Thin Solid Films, 345 (1999) 319-329.
[26] R. J. Highmore, A. L. Greer, J. A. Leake and J. E. Evetts, Materials Letters, (6) 11-12 (1988) 401-405.
[27] U. Gosele and K. N. Tu, Journal of Applied Physics, 66 (1989) 2619-2626.
[28] C. C. Lee, P. J. Wang, and J. S. Kim, 2007 Electronic Components and Technology Conference, (2007).
[29] P. Heitjans and S. Indris, Journal of Physics: Condensed Matter, 15 (2003) R1257-R1289.
[30] I. Kaur, Y. Mishin and W. Gust 1995 Fundamentals of Grain and Interphase Boundary Diffusion (New York: John Wiley & Sons).
[31] D. Wolf and S. Yip Materials Interfaces 1992 (London: Chapman & Hall).
[32] R. Wurschum, Metallurgical Reviews, 96 (1999) 1547-1553.
[33] J. Horvath Defect and Diffusion Forum, 66-69 (1989) 207-228.
[34] Y. P. Hsieh, C. C. Jao and Y. W. Yen, TMS 2010 - 139th Annual Meeting and Exhibition - Supplemental Proceedings, 3 (2010) 601.
[35] E. Saiz, R. M. Cannon, and A.P. Tomsia, Acta Mater. 48 (2000) 4449.

QR CODE