簡易檢索 / 詳目顯示

研究生: 劉常登
Chang-Teng Liu
論文名稱: 雙光柵自由曲面系統之光路徑函數與像差係數調整分析
Analysis of the Optical Path Function and Aberration Coefficients on Free-From Surface of Double Grating
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 徐勝均
Sheng-Dong Xu
沈志霖
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 90
中文關鍵詞: 光路徑函數雙曲面光柵系統像差費馬原理光譜儀
外文關鍵詞: optical path function, Double-grating system, aberrations, Fermat's principle, spectrometer
相關次數: 點閱:638下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究首先詳細說明雙橢圓曲面光柵(DEG)系統,包括光路徑函數及像差係數的分析,利用費馬原理與座標轉換求出雙橢圓曲面光柵中的像平面上之像差。但是因為固定曲率的關係,DEG系統的像差無法被調整。
    將DES系統改為雙自由曲面光柵(DFSG)系統,利用調整自由曲面光柵參數與光柵條紋函數參數降低雙光柵曲面系統中的像平面上之像差。假設一光柵曲面為自由曲面,其中自由曲面光柵方程式包含自由曲面光柵參數,為可變參數,並利用費馬原理與座標轉換求出雙自由曲面光柵中的像平面上之像差。雙自由曲面光柵系統建立光柵結構參數後,可計算出像差,借由自由曲面光柵參數與光柵條紋函數參數改變光柵曲面並修正像差,解決無法調整像差的問題。


    A double ellipsoidal grating (DEG) system with variable grating line spacing is presented, which includes the analysis of the optical path function and aberration coefficients. Fermat’s principle is applied to relate the coordinate systems between the two ellipsoidal gratings. Aberrations on the image plane can be calculated based on this analysis. However, the aberrations on the image plane for a DEG system is unable to be adjusted.
    In order to reduce the aberrations on the image plane for a double grating system, we construct a double free-form-surface grating (DFSG) system with variable grating line spacing. The aberration coefficients of the optical path function of a DFSG system are compared to those of a DEG system in order to construct the coefficients of free-form grating surface profile and variable line spacing. By using Fermat’s principle, the coordinate transformation between the two gratings is obtained.
    Aberrations on the image plane can be expressed as the grating surface profile coefficients and the grating line spacing coefficients. By adjusting these two sets of coefficients, we are able to reduce the aberrations on the image plane.

    第一章 序論 1 1.1 研究背景 1 1.2 研究目的 1 1.3 本文架構 2 第二章 原理探討 4 2.1 光柵成像性質分析 4 2.2 光柵方程式 5 2.3 Fermat's principle 8 第三章 雙橢圓曲面光柵系統參數設計與流程 11 3.1 雙橢圓曲面光柵系統光學結構 11 3.2 光路徑函數模型建立 13 3.3 解析模型 15 3.4 雙橢圓曲面光柵系統參數詳細內容 19 第四章 雙自由曲面光柵系統參數分析 37 4.1 雙自由曲面光柵方程式 37 4.2 雙自由曲面光柵系統之像差參數 43 4.3 雙橢圓曲面光柵系統與雙自由光柵曲面系統之對照 53 4.4 雙自由曲面光柵參數A ̃_ijkh和B ̃_ijkh之詳細內容 56 4.5 雙自由曲面光柵參數C ̃_ijkh和D ̃_ijkh內容 73 第五章 結論 80 參考文獻 82

    [1] G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt., 19, 010901 (2014).
    [2] J. S. Pearlman, P. S. Barry, C. C. Segal, John Shepanski, Debra Beiso and Stephen L. Carman, “Hyperion, a space-based imaging spectrometer,” IEEE Trans. Geosci. Remote Sens., 41, 1160-1173 (2003).
    [3] A. Coradini, F. Capaccioni, P. Drossart, A. Semery, G. Arnold, U. Schade, F. Angrilli, M. A. Barucci, G. Bellucci, G. Bianchini, J. P. Bibring, A. Blanco, M. Blecka, D. Bockelee-Morvan, R. Bonsignori, M. Bouye, E. Bussoletti, M. T. Capria, R. Carlson, U. Carsenty, P. Cerroni, L. Colangeli, M. Combes, M. Combi, J. Crovisier, M. Dami, M. C. DeSanctis, A. M. DiLellis, E. Dotto, T. Encrenaz, E. Epifani, S.Erard, S. Espinasse, A. Fave, C. Federico, U. Fink, S. Fonti, V. Formisano, Y. Hello, H. Hirsch, G. Huntzinger, R. Knoll, D. Kouach, W. H. Ip, P. Irwin, J. Kachlicki, Y. Langevin, G. Magni, T. McCord, V. Mennella, H. Michaelis, G. Mondello, S. Mottola, G. Neukum, V. Orofino, R. Orosei, P. Palumbo, G. Peter, B. Pforte, G. Piccioni, J. M. Reess, E. Ress, B. Saggin, B. Schmitt, D. Stefanovitch, A. Stern, F. Taylor, D. Tiphene and G. Tozzi, “VIRTIS: an imaging spectrometer of the Rosetta mission,” Adv. Space Res., 24, 1095-1104(1999).
    [4] S. Masui and T. Namioka, “Geometric aberration theory of double-element optical systems,” J. Opt. Soc. Am. A, 16, 2253-2268 (1999).
    [5] 林琦焜,最小作用量原理,「數學傳播」,第三十五卷,第一期,第15-28頁 (2011)。
    [6] T. Namioka, M. Koike and D. Content, “Geometric theory of the ellipsoidal grating,” Appl. Opt., 33, 7261–7274 (1994).
    [7] T. Namioka and M. Koike, “Aspheric wave-front recording optics for holographic gratings,” Appl. Opt., 34, 2180–2186 (1995).
    [8] H. Noda, T. Namioka and M. Seya, “Geometric theory of the grating,” J. Opt. Soc. Am. A, 64, 1031-1036 (1974).

    無法下載圖示 全文公開日期 2021/01/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE