簡易檢索 / 詳目顯示

研究生: 洪靖凱
Jing-Kai Hung
論文名稱: Offner光譜儀於波段400 – 1000 nm之設計與成像分析
Design and Imaging Analysis of an Offner Spectrometer for 400 nm to 1000 nm
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 蘇順豐
Shun-Feng Su
沈志霖
Ji-Lin Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 71
中文關鍵詞: Offner光譜儀光譜儀成像斑點繞射極限像差光譜解析度聚焦縱深調制轉移函數
外文關鍵詞: Offner spectrometer, Spectrometer, Spot diagram, Aberration, Spectral resolution, Diffraction limit, Depth of focus, Modulation transfer function
相關次數: 點閱:285下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為設計波段400 – 1000 nm的Offner光譜儀與成像分析,本研究提供一套Offner光譜儀的設計流程,並利用Code V建模且進行初步分析,觀察此系統是否達到設計者的需求,確定設計合理後,在進入TracePro做光跡追蹤模擬,進行較貼近真實情況的分析,最後,藉由聚焦縱深的分析考量偵測器的擺放位置並分析整套系統的解像品質。
    本研究設計出一套Offner光譜儀系統,應用波段於400 – 1000 nm, f/#為2.6,光柵的條紋間距為6.7 μm,在成像端展開的光譜長度為6.6 mm,中心波長700 nm的斑點的RMS為8.8 μm,而考量最差情況的波長400 nm及1000 nm斑點的RMS為9.6 μm及11.6 μm,系統的大小約為15cm。系統的分光方向為垂直方向,在波段範圍內,垂直方向斑點的半高全寬在15 μm至25 μm之間、光譜解析度在1.3 - 2.2 nm之間、繞射極限解析度在0.1 -0.3 nm之間,垂直方向繞射極限斑點的半高全寬在0.3 - 1.5 μm之間。
    利用TracePro中進行光跡追蹤模擬,將20 μm狹縫及偵測器的影響一併加入考量系統的總解析度的大小,各個波長結果均不會超過2.5 nm,總斑點的半高全寬均小於27.5 μm。本研究提供了聚焦縱深的分析流程,此系統各個波長垂直方向的聚焦縱深約為140 – 170 μm,水平方向的聚焦縱深約為102 μm。針對解像品質的分析,本研究提供了分析偵測面上MTF的分析流程,此MTF圖可表現最後偵測面上看到的真實數據。


    We present the design of an Offner spectrometer and analyze its imaging property. Code V, an optical design software, is used to build the model and operate the preliminary analysis. A design flow for the Offner spectrometer is established. The performance of an Offner spectrometer is simulated using an optical ray tracing software – TracePro. By analyzing the depth-of-focus of the focal points for various wavelengths, the location of the image sensor can be determined.
    The designed spectral range is from 400 nm to 1000 nm. The f-number is 2.6. The grating pitch is 6.7 μm. The distance range on the image sensor from 400 nm to 1000 nm is 6.6 mm. The root-mean-square spot sizes are 9.6 μm, 8.8 μm and 11.6 μm for wavelengths of 400 nm, 700 nm and 1000 nm, respectively.
    The size of this system is approximately 15 cm. For the 400-1000 nm spectral range, the FWHM spot size is from 15 μm to 25 μm. The aberration-related spectral resolution is between 1.3 nm to 2.2 nm. The diffraction-limited resolution is between 0.1 nm to 0.3 nm. The diffraction-limited spot size is between 0.3 μm to 1.5 μm.
    Using a 20-μm -wide slit and an image detector with a pixel size of 3.9 μm, the simulated spot size is smaller than 27.5 μm and the total spectral resolution of the system is better than 2.5 nm. A procedure to obtain the depth-of-focus for the entire designed wavelength range is developed. The result shows that the vertical depth-of-focus within the spectral range is from 140 μm to 170 μm and the horizontal depth-of-focus is around 102 μm. Using the focal point distribution on the detector (point spread function), we also calculate the modulation transfer function for further image quality evaluation.

    摘要 Abstract 目錄 圖目錄 表目錄 第一章 序論 1.1 研究背景 1.2 研究目的 1.3 本文架構 第二章 原理探討及文獻研究 2.1 光柵方程式 2.2 光程函數 2.3 反射式光柵相關定理 2.4 光譜解析度 2.5 調制轉移函數 (Modulation Transfer Function, MTF) 2.6 聚焦縱深(Depth of Focus, DoF) 第三章 Offner光譜儀參數設計及建模 3.1 系統參數設計流程 3.2 Code V建模分析 第四章 系統初步模擬分析 4.1 光譜解析度及含像差斑點大小分析 4.2 繞射極限解析度及繞射極限斑點大小分析 第五章 光跡追蹤模擬分析 5.1 TracePro建模分析 5.2 斑點的半高全寬分析及光譜解析度 5.3 系統總解析度及總斑點的半高全寬分析 5.4 系統DoF分析 5.5 偵測器解像品質分析 第六章 結論 參考文獻  

    [1] “Airborne Hyperspectral Remote Sensing Systems,” http://uregina.ca/piwowarj/Satellites/Hyperspectral.html
    [2] G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” Journal of Biomedical Optics, pp. 010901 (2014).
    [3] P. Mouroulis and M.McKerns, “Pushbroom imaging spectrometer with high spectroscomic data fidelity: experimental demonstration,” Optical Engineering, pp. 808-816 (2000).
    [4] D. Kwo, G. Lawrence, and M. Chrisp, “Design of a grating spectrometer from a 1:1 Offner mirror system,” Proceedings of SPIE, pp. 275-279 (1987).
    [5] H. Noda, T. Namioka, and M. Seya, “Geometrical theory of the grating,” Journal of the Optical Society of America, pp. 1031-1036 (1974).
    [6] C. H. Ko, J. S. Lin, N. P. Chen, C. T. Chen, and J. L. Shen, “Analysis of the focal pattern distortion of a cylindrical concave micro-grating in a slab waveguide and the mechanism of spatial resolution recovery,” Optical Engineering, pp. 018001-018001-7 (2010).
    [7] T. Onaka, T. Miyata, H. Kataza, and Y. Okamoto, “Design for an aberration-corrected concave grating for a mid-infrared long-slit spectrometer,” Applied Optics, pp. 1474 (2000).
    [8] W. B. Peatman, Gratings, Mirrors and Slits: Beamline Design for Soft X-Ray Synchrotron Radiation Sources, Gordon and Brench Sciemce, Netherlands (1997).
    [9] R. Grange, “Aberration-reduced holographic spherical gratings for Rowland circle spectrographs,” Applied Optics, pp. 3744-3749 (1992).
    [10] R. Grange, “Holographic spherical gratings: a new family of quasi-stigmatic designs for the Rowland-circle mounting,” Applied Optics, pp. 4875-4880 (1993).
    [11] J. R. Meyer-Arendt, Introduction to Classical and Modern Optics, Prentice Hall, New Jersey (1995).
    [12] H. Yinlei, Y. Jianyi, J. Xiaoqing, Z. Wei, Z. Jianying, Z. Haifeng, et al., “Analysis on Curved Waveguide Grating (CWG) with Rowland circle construction,” Optical Fiber Communication and Optoelectronics Conference, Asia, pp. 339-341 (2007).
    [13] C. Hutley, Diffraction gratings, Academic Press, New York (1982).
    [14] R. Serway and J. Jewett, Physics for Scientists and Engineers with Modern Physics, Cengage Learning, USA (2013).
    [15] G. Boreman, Modulation transfer funcion in optical and electro-optical systems, SPIE-The International Society for Optical Engineering, Washington (2001).
    [16] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Interscience, New Jersey (2013).
    [17] 章立佑,「反射式微結構之平面聚焦特性分析與探討」,碩士論文,國立臺灣科技大學,台北(2009)。
    [18] X.Prieto-Blanco, C. Montero-Orille, B. Couce, R.de la Fuente, “Analytical design of an Offner imaging spectrometer,” Optics Express, pp. 9156-9168 (2006).
    [19] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Interscience, New Jersey, pp. 80-107 (2013).
    [20] E. Hecht, Optics, Addison Wesley, San Francisco, pp. 479-481 (2002).
    [21] E. Hecht, Optics, Addison Wesley, San Francisco, pp. 467-474 (2002).
    [22] G. Boreman, Modulation transfer funcion in optical and electro-optical systems, SPIE-The International Society for Optical Engineering, Washington, pp. 20-25 (2001).
    [23] P. Getreuer, “A Survey of Gaussian Convolution Algorithms,” Image Processing On Line, pp. 286-310 (2013).

    無法下載圖示 全文公開日期 2020/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE