簡易檢索 / 詳目顯示

研究生: 張勛翔
Hsun-Hsiang Chang
論文名稱: 利用火花電漿燒結製程製備高熵合金粉末強化鎂基複合材料之機械性質研究
Study on Mechanical Properties of High Entropy Alloy Particle Reinforced Magnesium-based Composites Prepared by Spark Plasma Sintering
指導教授: 丘群
Chun Chiu
口試委員: 陳士勛
雷添壽
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 132
中文關鍵詞: AZ91鎂合金高熵合金火花電漿燒結機械性質
外文關鍵詞: AZ91 magnesium alloy, high entropy alloy, spark plasma sintering, mechanical properties
相關次數: 點閱:197下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用 AZ91D 鎂合金作為基材,Al0.5CoCrFeNi2 高熵合金粉末 (粉末粒徑為 10 ~ 60 μm) 以及 SiC 陶瓷粉末 (粉末粒徑為 38 μm) 作為強化相,並以熱壓製程與火花電漿燒結製程,兩種不同的粉末冶金製程製造鎂基複合材料。在 AZ91D 合金中分別摻雜 10 wt.% 高熵合金粉末以及 10 wt.% SiC 陶瓷粉末,並探討摻雜不同的強化相對鎂基複合材料之影響以及不同製程對鎂基複合材料之影響。
    結果顯示,鎂基複合材料之基底組成均為 α-Mg、富 Al 相或 Mg17Al12。相較於熱壓製程,火花電漿燒結製程能夠有效地降低材料的孔隙率,AZ91 由 12.6 % 降低至 8.5%;AZ91-Al0.5CoCrFeNi2 由 6.3 % 降低至 4.9 %;AZ91-SiC 由11.1 % 降低至 7.4%。硬度結果表明,摻雜強化相均有提升硬度的效果。壓縮試驗結果表明,熱壓燒結錠的極限抗壓強度由 464.4 MPa 提升至 492.0 MPa,應變量由 12.1 % 提升至 13.5 %;火花電漿燒結錠的極限抗壓強度由 484.3 MPa 提升至 501.4 MPa,應變量由 12.2 % 提升至 13.7 %。結果表明火花電漿製程之 AZ91-Al0.5CoCrFeNi2 有最佳的機械性質。


    In this study, magnesium-based metal matrix composites (MMCs), in which AZ91D alloy was as the substrate, and Al0.5CoCrFeNi2 high entropy alloy (HEA) powder (particle size of 10 ~ 60 μm) and SiC ceramic powder (particle size of 38 μm) were used as the reinforcement phases, were prepared by two different powder metallurgy manufacturing, including hot pressing (HP) and spark plasma sintering (SPS). The amount of HEA powder and SiC powder in the MMCs is 10 wt.%. The effects of reinforcement phase and processing on the properties of magnesium-based MMCs were studied.
    The results show that α-Mg, Al-rich phase or Mg17Al12 can be found in all of the magnesium-based composites. Compared to the hot pressing process, the SPS process can reduce the porosity of the material effectively. After SPS process, porosity of AZ91 is reduced from 12.6% to 8.5%. Porosity of AZ91-Al0.5CoCrFeNi2 is reduced from 6.3% to 4.9%, and porosity of AZ91-SiC is reduced from 11.1% to 7.4 %. The hardness increases when the reinforcement phase is introduced. The Ultimate compression strength (U.C.S.) of the HP sample increases from 464.4 MPa to 492 MPa, and the strain increases from 12.9% to 13.1%. The U.C.S. of the SPS sample increases from 484.3 MPa to 501.4 MPa, and the strain increases from 12.2% to 13.7%. The results indicate that AZ91-Al0.5CoCrFeNi2 prepared by spark plasma process has the superior mechanical properties

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XII 第一章 前言 1 第二章 文獻回顧 4 2.1 鎂與鎂合金簡介 4 2.1.1 鎂的介紹 4 2.1.2 鎂合金的介紹 4 2.1.3 元素添加對鎂合金之影響 5 2.1.4 鎂合金的命名方法 8 2.2 材料的強化機制 10 2.2.1 細晶粒尺寸強化 ( Grain refinement ) 10 2.2.2 固溶強化 ( Solid solution strengthening ) 12 2.2.3 散佈強化 ( Dispersion strengthening ) 12 2.2.4 析出硬化 ( Precipitation hardening ) 14 2.2.5 應變硬化 ( Strain hardening ) 14 2.2.6 熱膨脹係數差異影響 15 2.2.7 荷載傳遞效應 15 2.3 鎂基金屬複合材料 17 2.3.1 鎂基金屬複合材料簡介 17 2.3.2 摻雜 SiC 之鎂基金屬複合材料 18 2.3.3 摻雜 Al2O3 之鎂基金屬複合材料 21 2.3.4 摻雜 TiC 之鎂基金屬複合材料 24 2.3.5 摻雜金屬玻璃之鎂基金屬複合材料 25 2.4 複合材料的製備 26 2.4.1 鑄造 ( Casting ) 26 2.4.2 粉末冶金 ( Powder metallurgy ) 26 2.5 高熵合金簡介 32 2.5.1 高熵合金的四種效應 32 2.5.2 AlxCoCrFeNi 高熵合金簡介 33 2.6 研究動機 36 第三章 實驗方法 37 3.1 實驗流程 37 3.2 實驗材料 39 3.3 熱壓成型 41 3.4 火花電漿燒結 42 3.5 分析儀器 43 3.5.1 光學顯微鏡 43 3.5.2 X光繞射儀 44 3.5.3 高解析度場發射掃描式電子顯微鏡 47 3.5.4 微小維克式硬度計 48 3.5.5 奈米壓痕機械性質分析儀 49 3.5.6 落地式動態材料試驗機 50 第四章 結果與討論 51 4.1 原始材料分析 51 4.1.1 AZ91D 粉末 51 4.1.2 Al0.5CoCrFeNi2 高熵合金粉末 56 4.1.3 SiC 陶瓷粉末 60 4.2 熱壓法燒結錠 63 4.2.1 微觀結構分析 63 4.2.2 相分析 77 4.2.3 孔隙率分析 80 4.2.4 硬度分析 82 4.2.5 壓縮試驗分析 83 4.3 SPS 燒結錠 84 4.3.1 微觀結構分析 84 4.3.2 相分析 95 4.3.3 孔隙率分析 98 4.3.4 硬度分析 100 4.3.5 壓縮試驗分析 101 4.4 討論 102 第五章 結論 107 參考文獻 108

    [1] B. L. Mordike and T. Ebert, "Magnesium Properties — applications — potential," Materials Science and Engineering: A, vol. 302, pp. 37–45, 2001.
    [2] F. Qi, D. Zhang, X. Zhang, and X. Xu, "Effects of Mn addition and X-phase on the microstructure and mechanical properties of high-strength Mg–Zn–Y–Mn alloys," Materials Science and Engineering: A, vol. 593, pp. 70-78, 2014.
    [3] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, "Nanostructured High‐Entropy Alloys with Multiple Principal Elements Novel Alloy Design Concepts and Outcomes," Advanced Engineering Materials, vol. 6,no.5,pp.299-303, 2004.
    [4] J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, and S.-J. Lin, "Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements," Materials Chemistry and Physics, vol. 103, no. 1, pp. 41-46, 2007.
    [5] M. H. Tsai and J. W. Yeh, "High-Entropy Alloys: A Critical Review," Materials Research Letters, vol. 2, no. 3, pp. 107-123, 2014.
    [6] Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu, "Microstructures and properties of high-entropy alloys," Progress in Materials Science, vol. 61, pp. 1-93, 2014.
    [7] B. E. MacDonald, Z. Fu, B. Zheng, W. Chen, Y. Lin, F. Chen, L. Zhang, J. Ivanisenko, Y. Zhou, H. Hahn, and E. J. Lavernia, "Recent Progress in High Entropy Alloy Research," Jom, vol. 69, no. 10, pp. 2024-2031, 2017.
    [8] D. B. Miracle and O. N. Senkov, "A critical review of high entropy alloys and related concepts," Acta Materialia, vol. 122, pp. 448-511, 2017.
    [9] W. F. McDonough and S.-s. Sun, "The composition of the Earth," Chemical Geology, vol. 120, no. 3–4, pp. 223-253, 1994.
    [10] M. K. Kulekci, "Magnesium and its alloys applications in automotive industry," The International Journal of Advanced Manufacturing Technology, vol. 39, no. 9-10, pp. 851-865, 2007.
    [11] J. Chen, L. Tan, X. Yu, I. P. Etim, M. Ibrahim, and K. Yang, "Mechanical properties of magnesium alloys for medical application: A review," J Mech Behav Biomed Mater, vol. 87, pp. 68-79, Nov 2018.
    [12] K. N. Braszczyńska-Malik, Precipitates of γ–Mg17Al12 Phase in AZ91 Alloy (Magnesium Alloys - Design, Processing and Properties). 2010.
    [13] S. You, Y. Huang, K. U. Kainer, and N. Hort, "Recent research and developments on wrought magnesium alloys," Journal of Magnesium and Alloys, vol. 5, no. 3, pp. 239-253, 2017.
    [14] Y. C. Zhao, M. C. Zhao, R. Xu, L. Liu, J. X. Tao, C. Gao, C. Shuai, and A. Atrens, "Formation and characteristic corrosion behavior of alternately lamellar arranged α and β in as-cast AZ91 Mg alloy," Journal of Alloys and Compounds, vol. 770, pp. 549-558, 2019.
    [15] R. Ambat, N. N. Aung, and W. Zhou, "Evaluation of microstructure effects on carrion behavior of AZ91D magnesium," Corrosion Science, pp. 1433-1455, 2000.
    [16] M. Ali, M. A. Hussein, and N. Al-Aqeeli, "Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties," Journal of Alloys and Compounds, vol. 792, pp. 1162-1190, 2019.
    [17] A. A. Luo, "Recent magnesium alloy development for elevated temperature applications," International Materials Reviews, vol. 49, no. 1, pp. 13-30, 2013.
    [18] W. R. Zhou, Y. F. Zheng, M. A. Leeflang, and J. Zhou, "Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application," Acta Biomater, vol. 9, no. 10, pp. 8488-98, Nov 2013.
    [19] M. Gupta and W. L. E. Wong, "Magnesium-based nanocomposites: Lightweight materials of the future," Materials Characterization, vol. 105, pp. 30-46, 2015.
    [20] A. Kielbus and T. Rzychon, "Mechanical and creep properties of Mg-4Y-3RE and Mg-3Nd-1Gd magnesium alloy," Procedia Engineering, vol. 10, pp. 1835-1840, 2011.
    [21] L. Zhang, J. Zhang, C. Xu, S. Liu, Y. Jiao, L. Xu, Y. Wang, J. Meng, R. Wu, and M. Zhang, "Investigation of high-strength and superplastic Mg–Y–Gd–Zn alloy," Materials & Design, vol. 61, pp. 168-176, 2014.
    [22] A. International, "Standard Practice for Temper Designations of Magnesium Alloys, Cast and Wrought," ASTM Standard B275, 2008.
    [23] R. Abbaschian and R. E. Reed-Hill, Physical Metallurgy Principles. 2009.
    [24] Y. Dai and Q. P. Kong, "On the Physical Origin of Equicohesive Temperature for Creep," Strength of Metals and Alloys (ICSMA 8), vol. 2, pp. 959-964, 1989.
    [25] M. Habibnejad-Korayem, R. Mahmudi, and W. J. Poole, "Enhanced properties of Mg-based nano-composites reinforced with Al2O3 nano-particles," Materials Science and Engineering: A, vol. 519, no. 1-2, pp. 198-203, 2009.
    [26] W. Yuan, S. K. Panigrahi, J. Q. Su, and R. S. Mishra, "Influence of grain size and texture on Hall–Petch relationship for a magnesium alloy," Scripta Materialia, vol. 65, no. 11, pp. 994-997, 2011.
    [27] N. Hansen, "Hall–Petch relation and boundary strengthening," Scripta Materialia, vol. 51, no. 8, pp. 801-806, 2004.
    [28] Y. Mishima, S. Ochiai, N. Hamao, M. Yodogawa, and T. Suzuki, "Solid solution hardening of Ni3Al with ternary additions," Transactions of the Japan institute of metals, vol. 27, no. 9, pp. 648-655, 1986.
    [29] Q. Yang, F. Bu, X. Qiu, Y. Li, W. Li, W. Sun, X. Liu, and J. Meng, "Strengthening effect of nano-scale precipitates in a die-cast Mg–4Al–5.6Sm–0.3Mn alloy," Journal of Alloys and Compounds, vol. 665, pp. 240-250, 2016.
    [30] F. B. C. Jr. and L. M. Schetky, "Dislocation in metal," Scientific American, vol. Vol. 193, No. 1, pp. 80-87, 1955.
    [31] S. F. Hassan and M. Gupta, "Enhancing physical and mechanical," Metallurgical and Materials Transactions A, vol. 36, no. 8, pp. 2253-2258, 2005.
    [32] 叶想平, 李英雷, 翁继东, 蔡灵仓, and 刘仓理, "颗粒增强金属基复合材料的强化机理研究现状," 材料工程, vol. vol.46, no.12, pp.28-37, 2018.
    [33] A. J. Ardell, "Precipitation hardening," Metallurgical Transactions A, vol. 16, pp. 2131–2165, 1985.
    [34] A. Munitz, A. Shtechman, C. Cotler, M. Talianker, and S. Dahan, "Mechanical properties and microstructure of neutron irradiated cold worked Al-6063 alloy," Journal of Nuclear Materials, vol. 252, no. 1–2, pp. 79-88, 1997.
    [35] J. Peng, Z. Zhang, J. Huang, P. Guo, W. Zhou, and Y. Wu, "The effect of grain size on texture evolution and mechanical properties of an AZ31 magnesium alloy during cold-rolling process," Journal of Alloys and Compounds, vol. 817, 2020.
    [36] R. A. Jr and L. Christodoulou, "The role of equiaxed particles on the yield stress of composites," Scripta Metallurgica et Materialia, vol. 25, no. 1, pp. 9-14, 1991.
    [37] S. J. Huang, C. H. Ho, Y. Feldman, and R. Tenne, "Advanced AZ31 Mg alloy composites reinforced by WS2 nanotubes," Journal of Alloys and Compounds, vol. 654, pp. 15-22, 2016.
    [38] S. J. Huang and A. N. Ali, "Experimental investigations of effects of SiC contents and severe plastic deformation on the microstructure and mechanical properties of SiCp/AZ61 magnesium metal matrix composites," Journal of Materials Processing Technology, vol. 272, pp. 28-39, 2019.
    [39] T. Thirugnanasambandham, J. Chandradass, P. B. Sethupathi, and M. L. J. Martin, "Experimental study of wear characteristics of Al2O3 reinforced magnesium based metal matrix composites," Materials Today: Proceedings, vol. 14, pp. 211-218, 2019.
    [40] H. Y. Wang, Q. C. .Jiang, Y. Wang, B. X. Ma, and F. Zhao, "Fabrication of TiB2 particulate reinforced magnesium matrix composites by powder metallurgy," Materials Letters, vol. 58, no. 27-28, pp. 3509-3513, 2004.
    [41] K. B. Nie, X. J. Wang, X. S. Hu, L. Xu, K. Wu, and M. Y. Zheng, "Microstructure and mechanical properties of SiC nanoparticles reinforced magnesium matrix composites fabricated by ultrasonic vibration," Materials Science and Engineering: A, vol. 528, no. 15, pp. 5278-5282, 2011.
    [42] A. Luo, "Processing, microstructure, and mechanical behavior of cast magnesium metal matrix composites," Metallurgical and Materials Transactions A, vol. vol. 26, no. 9, pp. 2445-2455, 1995.
    [43] V. Sklenicka, M. Svoboda, M. Pahutova, K. Kucharova, and T. G. Langdon, "Microstructural processes in creep of an AZ 91 magnesium-based composite and its matrix alloy," Materials Science and Engineering A, vol. 741–745, 2001.
    [44] S. F. Hassan and M. Gupta, "Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement," Materials Science and Engineering: A, vol. 392, no. 1-2, pp. 163-168, 2005.
    [45] W. Cao, C. Zhang, T. Fan, and D. Zhang, "In situ synthesis and damping capacities of TiC reinforced magnesium matrix composites," Materials Science and Engineering: A, vol. 496, no. 1-2, pp. 242-246, 2008.
    [46] D. V. Dudina, K. Georgarakis, Y. Li, M. Aljerf, A. LeMoulec, A. R. Yavari, and A. Inoue, "A magnesium alloy matrix composite reinforced with metallic glass," Composites Science and Technology, vol. 69, no. 15-16, pp. 2734-2736, 2009.
    [47] M. Stuer, Z. Zhao, U. Aschauer, and P. Bowen, "Transparent polycrystalline alumina using spark plasma sintering: Effect of Mg, Y and La doping," Journal of the European Ceramic Society, vol. 30, no. 6, pp. 1335-1343, 2010.
    [48] M. Mondet, E. Barraud, S. Lemonnier, N. Allain, and T. Grosdidier, "Optimisation of the mechanical properties of a Spark Plasma Sintered (SPS) magnesium alloy through a post-sintering in-situ precipitation treatment," Journal of Alloys and Compounds, vol. 698, pp. 259-266, 2017.
    [49] 周雅文, "火花電漿燒結技術於熱電材料開發之應用," 工業材料雜誌287期, pp. 142-148, 2010.
    [50] Y. Cheng, Z. Cui, L. Cheng, D. Gong, and W. Wang, "Effect of particle size on densification of pure magnesium during spark plasma sintering," Advanced Powder Technology, vol. 28, no. 4, pp. 1129-1135, 2017.
    [51] S. W. Kao, J. W. Yeh, and T. S. Chin, "Rapidly solidified structure of alloys with up to eight equal-molar elements—a simulation by molecular dynamics," Journal of Physics: Condensed Matter, vol. 20, no. 14, 2008.
    [52] C. J. Tong, Y. L. Chen, S. K. Chen, J. W. Yeh, T. T. Shun, C. H. Tsau, S. J. Lin, and S. Y. Chang, "Microstructure Characterization of AlxCoCrCuFeNi," Metallurgical and Materials Transactions A, vol. 36A, pp. 881-893, 2005.
    [53] W. Li, P. Liu, and P. K. Liaw, "Microstructures and properties of high-entropy alloy films and coatings: a review," Materials Research Letters, vol. 6, no. 4, pp. 199-229, 2018.
    [54] R. S. Mishra, N. Kumar, and M. Komarasamy, "Lattice strain framework for plastic deformation in complex concentrated alloys including high entropy alloys," Materials Science and Technology, vol. 31, no. 10, pp. 1259-1263, 2015.
    [55] K. Y. Tsai, M. H. Tsai, and J. W. Yeh, "Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys," Acta Materialia, vol. 61, no. 13, pp. 4887-4897, 2013.
    [56] B.Cantor, High-Entropy Alloys (Encyclopedia of Materials: Science and Technology (Second Edition)). 2011, pp. 1-3.
    [57] S. Ranganathan, "Alloyed pleasures- multimetallic cocktails," Current science, vol. 85, no. 5, pp. 1404-1406, 2003.
    [58] P. F. Zhou, D. H. Xiao, Z. Wu, and X. Q. Ou, "Al0.5FeCoCrNi high entropy alloy prepared by selective laser melting with gas-atomized pre-alloy powders," Materials Science and Engineering: A, vol. 739, pp. 86-89, 2019.
    [59] K. C. Cheng, J. H. Chen, S. Stadler, and S. H. Chen, "Properties of atomized AlCoCrFeNi high-entropy alloy powders and their phase-adjustable coatings prepared via plasma spray process," Applied Surface Science, vol. 478, pp. 478-486, 2019.
    [60] 林麗娟, "X光繞射原理及應用," 工業材料 86期, pp. 100-109, 1994.
    [61] J. Medved, P. Mrvar, and M. Vončina, Oxidation Resistance of AM60, AM50, AE42 and AZ91 magnesium alloy (Magnesium Alloys - Corrosion and Surface Treatments). InTech, 2011, pp. 2-28.
    [62] F. Aydin, Y. Sun, and M. E. Turan, "The Effect of TiB2 Content on Wear and Mechanical Behavior of AZ91 Magnesium Matrix Composites Produced by Powder Metallurgy," Powder Metallurgy and Metal Ceramics, vol. 57, no. 9-10, pp. 564-572, 2019.
    [63] S. Jayalakshmi, Q. B. Nguyen, and M. Gupta, "Microstructural and mechanical properties of AZ31 magnesium alloy with Cr addition and CO2 incorporation during processing," Materials Chemistry and Physics, vol. 134, no. 2-3, pp. 721-727, 2012.
    [64] N. Kumar, A. Bharti, and K. K. Saxena, "A re-analysis of effect of various process parameters on the mechanical properties of Mg based MMCs fabricated by powder metallurgy technique," Materials Today: Proceedings, vol. 26, pp. 1953-1959, 2020.
    [65] M. Mondet, E. Barraud, S. Lemonnier, J. Guyon, N. Allain, and T. Grosdidier, "Microstructure and mechanical properties of AZ91 magnesium alloy developed by Spark Plasma Sintering," Acta Materialia, vol. 119, pp. 55-67, 2016.

    無法下載圖示 全文公開日期 2025/08/10 (校內網路)
    全文公開日期 2025/08/10 (校外網路)
    全文公開日期 2025/08/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE