簡易檢索 / 詳目顯示

研究生: 吳佩容
Pei-Jung Wu
論文名稱: 以晶種成長法進行硫化銀異質結構材料之製備與分析鑑定
Controlled synthesis of silver sulfide-based heterogeneous nanostructures through seed mediated growth approach
指導教授: 張家耀
Jia-Yaw Chang
口試委員: 麥富德
Fu-Der Mai
蔡伸隆
Shen-Long Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 134
中文關鍵詞: 晶種成長法硫化銀異質結構材料量子點共價偶聯法
外文關鍵詞: seeded growth, silver sulfide, heterostructure, quantum dot, conjugating
相關次數: 點閱:190下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一部分
    本研究以溶劑熱法控制合成Ag2S反應晶種,並透過不同二次金屬在其表面沉積成長或是進行陽離子交換,獲得組成、形狀以及材料特性大不相同異質結構奈米晶體,如.Ag2S-ZnS、Ag2S/CdS、Ag2S/CdS-ZnS、Ag/AgInS2奈米晶體。不同於其他金屬晶種,Ag+離子在Ag2S晶種中就像是流體一般表現出高度的流動性,使得Ag2S晶種表面產生大量的陽離子缺陷位置,適合做為異質結構成長之晶種,即使是在晶格不匹配度相當大的界面上,仍然可以維持高度的穩定性。目前本系統已經能夠合成球型、三角形、棒子等不同形狀之奈米晶體,並藉由反應時間與二次金屬反應濃度控制奈米晶體尺寸大小,最後我們藉由穿透式電子顯微鏡、X光繞射圖譜、能量散佈能譜儀、X射線光電子能譜儀、螢光光譜儀、UV-vis吸收光譜儀以及循環伏安法等,對我們所合成之異質結構材料進行分析和鑑定。
    第二部分
    本研究目的將建立在生醫分子影像的基礎上,進行Methotrexate抗癌藥物偶聯AgInS2/ZnS量子點,由於研究所用之AgInS2/ZnS量子點屬於有機相,致使量子點無法溶於水溶液相,當量子點應用於生物系統時,必須在量子點進行表面修飾和官能基的改質,因此我們將以兩性高分子的包覆,使其表面具有大量親水性羧基轉為極性相之AgInS2/ZnS量子點,最後利用EDC/NHS共價偶聯系統將量子點與甲氨蝶呤(Methotrexate、MTX)抗癌藥物結合在一起,開發出一個兼具細胞螢光顯影、藥物標靶以及藥物治療等多功能性量子點,期待未來在醫學臨床上有更廣泛之應用。


    Part I
    In this study, we synthesized Ag2S as crystalline seeds through thermal deposition, then further deposited different secondary metal or cation exchanging on the surfaces of Ag2S to obtain heterostructure nanocrystals with various types of compositions, shapes and properties, such as Ag2S-ZnS, Ag2S/CdS, Ag2S/CdS-ZnS and Ag/AgInS2. Unlike other metal seeds, Ag+ showed a fluid-like characteristic and exhibited high degree of mobility in the Ag2S, leading to more defects of cation. Even in large lattice mismatch at the interface, the growth of heterostuctures benefited from those defects. By controlling the reaction time and the concentration of secondary metal, we were able to synthesize spherical, triangular and stick nanocrystals. Finally, the heterostructure materials were identified by transmission electron microscopy, X-ray diffraction patterns, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, fluorescence spectroscopy, UV/vis absorption spectroscopy and cyclic voltammetry.
    Part II
    In this research, we investigated the Methotrexate (MTX) anticancer drugs conjugating with the AgInS2/ZnS quantum dots. The AgInS2/ZnS quantum dots cannot dissolve in aqueous phase. For biological application, PMAO were linked to the surfaces of AgInS2/ZnS quantum dots to make AgInS2/ZnS quantum dots dissolve in aqueous phase. Subsequently, the MTX anticancer drugs conjugated with the modified AgInS2/ZnS quantum dots by straightforward EDC/NHS catalyzed coupling reaction in order to develop multifunctional quantum dots including cell imaging, targeting and drug therapy.

    摘要 I Abstract II 致謝 III 總目錄 IV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 理論基礎與文獻回顧 3 2.1 奈米材料之基本特性 3 2.1.1 小尺寸效應(Size Effect) 3 2.1.2 表面效應(Surface Effect) 5 2.2 異質結構奈米晶體 ( Heteronanostructures ) 7 2.2.1 異質結構奈米晶體介紹 7 2.2.2 Ag2S奈米晶體介紹 9 2.2.3 Ag2S紅外光量子點介紹 10 2.2.4 異質結構奈米晶體形狀 11 2.2.5 異質結構奈米晶體生長機制 12 2.2.6 異質結構奈米晶體合成方法 34 第三章 實驗方法 39 3.1 實驗藥品 39 3.2 實驗量測儀器 41 3.3 實驗步驟 42 3.3.1 Ag2S奈米晶體合成 42 3.3.2 Ag2S-ZnS奈米棒合成 42 3.3.3 Ag2S/CdS量子點合成 43 3.3.4 Ag2S/CdS奈米晶體合成 43 3.3.5 Ag2S/CdS-ZnS奈米棒合成 43 3.3.6 Ag/AgInS2奈米晶體合成 43 3.3.7 Ag/AgInS2/ZnS奈米晶體合成 44 3.3.8 AgInS2/ZnS量子點合成 44 3.3.9 AgInS2/ZnS量子點表面改質 45 3.3.10 水溶性AgInS2/ZnS量子點偶聯抗癌藥物 45 3.4 樣品分析 46 第四章 實驗結果與討論 60 4.1 硫化銀-金屬硫化物異質結構材料的製備與鑑定 60 4.1.1 異質結構材料合成實驗介紹 60 4.1.2 Ag2S晶種成長機制 61 4.1.3 Ag2S晶種合成與分析鑑定 64 4.1.4 Ag2S-ZnS異質結構材料合成與分析鑑定 70 4.1.5 Ag2S/CdS與Ag2S/CdS-ZnS異質結構材料合成與分析鑑定 82 4.1.6 Ag2S/CdS量子點合成與分析鑑定 87 4.1.7 Ag/AgInS2與Ag/AgInS2/ZnS異質結構材料合成與分析鑑定 92 4.2 水溶性AgInS2/ZnS量子點偶聯抗癌藥物 98 4.2.1 水溶性AgInS2/ZnS量子點偶聯抗癌藥物介紹 98 4.2.2 水溶性AgInS2/ZnS量子點偶聯抗癌藥物方法與機制 99 4.2.3 水溶性AgInS2/ZnS量子點偶聯抗癌藥物之分析鑑定 103 第五章 結論 110 參考文獻 113

    [1] 馬振基編撰 (2003),奈米材料科技原理與應用,全華科技圖書股份有限公司,臺灣。
    [2] 張立德等編(2002),奈米材料和奈米結構,鼎隆圖書股份有限公司,臺灣。
    [3] 賴炤銘編撰 (2003),奈米材料的特殊效應與應用,The Chinese Chem. Soc., 61, 585.
    [4] 張安華編撰 (2005),實用奈米技術,新文京開發出版股份有限公司,臺灣。
    [5] 羅吉宗等編撰 (2008),奈米科技導論(修訂版),全華圖書股份有限公司,臺灣。
    [6] 蘇品書編撰 (1999),超微粒子材料技術,復漢出版社,臺灣。
    [7] 陸慧,陰其俊,夏姣貞 .化學物理學報, 2005, 18(6), 1034.
    [8] V. Schmidt, J. V. Wittemann and U. Gösele, Chem. Rev., 2010, 110, 361.
    [9] L. E. Euliss, J. A. DuPont, S. Gratton and J. DeSimone, Chem. Soc. Rev., 2006, 35, 1095.
    [10] X. G. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos, J. Am. Chem. Soc., 1997, 119, 7019.
    [11] Yu, S. S. Chang, C.L. Lee and C. R. C. Wang, J. Phys. Chem. B, 1997, 101, 6661.
    [12] N. Cordente, M. Respaud, F. Senocq, M.-J. Casanove, C. Amiens and B. Chaudret, Nano Lett., 2001, 1, 565.
    [13] V. F. Puntes, D. Zanchet, C. K. Erdonmez and A. P. Alivisatos, J. Am. Chem. Soc., 2002, 124, 12874.
    [14] S. Chen, Z. Fan and D. L. Carroll, J. Phys. Chem. B, 2002, 106, 10777.
    [15] H. Yu, J. Li, R. A. Loomis, P. C. Gibbons, Wang and W. E. Buhro, J. Am. Chem. Soc., 2003, 125, 16168.
    [16] J. W. Grebinski, K. L. Hull, J. Zhang, T. H. Kosel and M. Kuno, Chem. Mater., 2004, 16, 5260.
    [17] X. Zhong, R. Xie, L. Sun, I. Lieberwirth and W. Knoll, J. Phys. Chem. B, 2005, 110, 2.
    [18] D. J. Milliron, S. M. Hughes, Y. Cui, L. Manna, J. Li, L. W. Wang and A. P. Alivisatos, Nature, 2004, 430, 190.
    [19] S. M. Lee, Y. w. Jun, S. N. Cho and J. Cheon, J. Am. Chem. Soc., 2002, 124, 11244.
    [20] N. Zhao and L. M. Qi, Adv. Mater., 2006, 18, 359.
    [21] L. Zheng, Y. Xu, Y. Song, C. Wu, M. Zhang and Y. Xie, Inorg. Chem., 2009, 48, 4003.
    [22] H. Dlala, M. Amlouk, S, Belgacem, P. Girard, D. Barjon and Eur. Phys. J. Appl. Phys., 1988, 2, 13.
    [23] W. P. Lim, Z. Zhang, H. Y. Low and W. S. Chin, Angew. Chem. Int. Ed., 2004, 43, 5685.
    [24] C. O’Sullivan, R. D. Gunning, A. Sanyal, C. A. Barrett, H. Geaney, F. R. Laffir, S. Ahmed and K. M. Ryan, J. Am. Chem. Soc., 2009, 131, 12250.
    [25] J. Zeng, J. Tao, D. Su, Y. Zhu, D. Qin and Y. Xia, Nano Lett., 2011, 11, 3010.
    [26] Y. Du, B. Xu, T. Fu, M. Cai, F. Li, Y. Zhang and Q. Wang, J. Am. Chem. Soc., 2010, 132,1470.
    [27] M. Han, X. Gao, J. Z. Su and S. Nie, Nat Biotech, 2001, 19, 631.
    [28] W. C. W. Chan and S. Nie, Science, 1998, 281, 2016.
    [29] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose and J. J. Li, Science, 2005, 307, 538.
    [30] J. Gao, K. Chen, R. Xie, J. Xie, Y. Yan and Z. Cheng, Bioconjug Chem., 2010, 21, 604.
    [31] W. W. Yu, Y. A. Wang and X. G. Peng. Chem. Mater., 2003, 15, 4300.
    [32] M. A. Hines and G. D. Scholes, Adv. Mater., 2003, 15, 1844.
    [33] B. Blackman, D. M. Battaglia, T. D. Mishima, M. B. Johnson and X. Peng, Chem. Mater., 2007, 19, 3815.
    [34] S. Kim, B. Fisher, H. J. Eisler and M. Bawendi, J. Am. Chem. Soc., 2003, 125, 11466.
    [35] P. Jiang, Z. Q. Tian, C. N. Zhu, Z. L. Zhang and D. W. Pang, Chem. Mater., 2012, 24, 3.
    [36] A. P. Alivisatos, Science, 1996, 271, 933.
    [37] H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec and M. G. Bawendi, J. Am. Chem. Soc., 2000, 122, 12142.
    [38] Q. B. Wang, Y. Xu, X. H. Zhao, Y. Chang, Y. Liu, L. J. Jiang, J. Sharma, D. K. Seo and H. Yan, J. Am. Chem. Soc., 2007, 129, 6380.
    [39] Q. B. Wang, D. K. Seo, Chem. Mater., 2005, 17, 4762.
    [40] C. Tian, Z. Kang, E. Wang, B. Mao, S. Li, Z. Su and L. Xu, Nanotechnology, 2006, 17, 5681.
    [41] Y. Shi, Y. Wang, D. Wang, B. Liu, Y. Li and L. Wei, Cryst. Growth Des., 2012, 12, 1785.
    [42] M. E. Norako and R. L. Brutchey, Chem. Mater., 2010, 22, 1613.
    [43] B. Koo, R. N. Patel, and B. A. Korgel, Chem. Mater., 2009, 21, 1962.
    [44] R. A. Laudise, Chemical & Engineering News Archive, 1987, 65, 30.
    [45] J. C. Lin and M. Z. Yates, Langmuir, 2005, 21, 2117.
    [46] J. D. Mackenzie and E. P. Bescher, Accounts Chem. Res., 2007, 40, 810.
    [47] P. Zhu, J. Zhang, Z. Wu and Z. Zhang, Cryst. Growth Des., 2008, 8, 3148.
    [48] P. D. Cozzoli, T. Pellegrino and L. Manna, Chem. Soc. Rev., 2006, 35, 1195.
    [49] J. Chun and J. Lee, Eur. J. Inorg. Chem., 2010, 10, 4251.
    [50] A. Huczko, Appl. Phys. A: Mater. Sci. Process., 2000, 70, 365.
    [51] L. Shi and Q. Li, Cryst. Eng. Comm., 2011, 13, 7262.
    [52] Z. Wang, Z. Lai and G. Chen, Adv. Mater. Res., 1755 ,415.
    [53] S. Phok, S. Rajaputra and V. P. Singh, Nanotechnology, 2007, 18, 475601.
    [54] L. Juan, M. X. Liang, S. D. Lin and C. Guorong, Acta Phys. Chim. Sin., 2009, 25, 2445.
    [55] C. N. R. Rao, A. Govindaraj, F. L. Deepak, N. A. Gunari and M. Nath, Appl. Phys. Lett., 2001, 78, 1853.
    [56] R. S. Wagner and W. Ellis, Appl. Phys. Lett., 1964, 4, 89.
    [57] Y. Wu and P. Yang, J. Am. Chem. Soc., 2001, 123, 3165.
    [58] G. Lee, Y. S. Woo, J. E. Yang, D. Lee, C. J. Kim and M. H. Jo, Angew. Chem. Int. Ed., 2009, 48, 7366.
    [59] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons and W. E. Buhro, Science, 1995, 270, 1791.
    [60] F. Wang, A. Dong, J. Sun, R. Tang, H. Yu and W. E. Buhro, Inorg. Chem., 2006, 45, 7511.
    [61] M. Kuno, Phys. Chem. Chem. Phys., 2008, 10, 620.
    [62] L. Ratke and P. W. Voorhees, Springer, 2002, 117.
    [63] Z. Y. Tang, N. A. Kotov and M. Giersig, Science, 2002, 297, 237.
    [64] K. S. Cho, D. V. Talapin, W. Gaschler and C. B. Murray, J. Am. Chem. Soc., 2005, 127, 7140.
    [65] H. L. Zhu and R. S. Averback, Philos. Mag. Lett., 1996, 73, 27.
    [66] J. H. Yu, J. Joo, H. M. Park, S. I. Baik, Y. W. Kim, S. C. Kim and T. Hyeon, J. Am. Chem. Soc., 2005, 127, 5662.
    [67] D. Zitoun, N. Pinna, N. Frolet and C. Belin, J. Am. Chem. Soc., 2005, 127, 15034.
    [68] M. Yeadon, M. Ghaly, J. C. Yang, R. S. Averback and J. M. Gibson, Appl. Phys. Lett., 1998, 73, 3208.
    [69] Z. Tang, N. A. Kotov and M. Giersig, Science, 2002, 297, 237.
    [70] Y. Yu, G. Chen, Q. Wang and Y. Li, Energ. Environ. Sci., 2011, 4, 3652.
    [71] R. L. Penn and J. F. Banfield, Geochim. Cosmochim. Acta., 1999, 63, 1549.
    [72] T. Tsuruoka, S. Furukawa, Y. Takashima, K. Yoshida, S. Isoda and S. Kitagawa, Angew. Chem. Int. Ed., 2009, 48, 4739.
    [73] E. J. H. Lee, C. Ribeiro, E. Longo and E. R. Leite, J. Phys. Chem. B, 2005, 109, 20842.
    [74] Y. W. Jun, J. H. Lee, J. S. Choi, J. Cheon, J. Phys. Chem. B, 2005, 109, 14795.
    [75] D. V. Talapin, J. S. Lee, M. V. Kovalenko and E. V. Shevchenko, Chem. Rev., 2010, 110, 389.
    [76] L. Manna, E. C. Scher and A. P. Alivisatos, J. Am. Chem. Soc., 2000, 122, 12700.
    [77] A. Ghezelbash and B. A. Korgel, Langmuir, 2005, 21, 9451.
    [78] J. Wang and C. Zeng, Cryst. Growth, 2004, 270, 729.
    [79] J. Wang, Q. W. Chen, C. Zeng and B. Y. Hou, Adv. Mater., 2004, 162, 137.
    [80] C. Cheng, D. T. Haynie, J. Appl. Phys., 2005, 87, 263112.
    [81] M. Tanase, D. M. Silevitch, A. Hultgren, L. A. Bauer and P. C. Searson, J. Appl. Phys., 2002, 91,8549.
    [82] S. E. Skrabalak and Y. Xia, Nano, 2009, 3, 10-15.
    [83] M. Faraday, Philosophical Transactions of the Royal Society of London, 1857, 147, 145.
    [84] H. Yu, P. C. Gibbons, K. F. Kelton and W. E. Buhro, J. Am. Chem. Soc., 2001, 123, 9198.
    [85] D. Seo, C. I. Yoo, J.Jung, H. Song, J. Am. Chem.Soc., 2008, 130, 29401.
    [86] Y. Xia, Y. Xiong, B. Lim and S. E. Skrabalak, Angew. Chem. Int. Ed., 2009, 48, 60.
    [87] D. Wang and Y. Li, Adv. Mater., 2011, 23, 1044.
    [88] S. E. Habas , H. Lee , V. Radmilovic , G. A. Somorjai and P. Yang, Nat. Mater., 2007, 6 , 692.
    [89] A. Mews, A. Eychmuller, M. Giersig, D. Schooss and H. Weller, J. Phys. Chem., 1994, 98, 934.
    [90] J. V. Williams, N. A. Kotov and P. E. Savage, Ind. Eng. Chem. Res., 2009, 48, 4316.
    [91] R. Xie, D. Battaglia and X. Peng, J. Am. Chem. Soc., 2007, 129, 15432.
    [92] D. Pan, L. An, Z. Sun, W. Hou, Y. Yang, Z. Yang and Y. Lu, J. Am. Chem. Soc., 2008, 130, 5620.
    [93] X. Lu, Z. Zhuang, Q. Peng and Y. Li, Chem. Commun., 2011, 47, 3141.
    [94] W. Du, X. Qian, J. Yin and Q. Gong, Chem. Eur. J., 2007, 13, 8840.
    [95] Y. Jiang, Y. Wu, X. Mo, W. Yu, Y. Xie and Y. Qian, Inorg. Chem., 2000, 39, 2964.
    [96] J. Xiao, Y. Xie, Y. Xiong, R. Tang and Y. Qian, J. Mater. Chem., 2001, 11, 1417.
    [97] L. Ren, F. Yang, Y. R. Deng, N. N. Yan, S. Huang, D. Lei, Q. Sun and Y. Yu, Int. J. Hydrogen. Energ., 2010, 35, 3297.
    [98] S. Liu, H. Zhang, Y. Qiao and X. Su, Advances, 2012, 2, 819.
    [99] M. Baghbanzadeh, L. Carbone, P. D. Cozzoli and C. O. Kappe, Angew. Chem. Int. Ed., 2011, 50, 11312.
    [100] Y. Li, L. Jing, R. Qiao and M. Gao, Chem. Commun., 2011, 47, 9293.
    [101] http://www.aandb.com.tw/Page0004/uv_vis_04_lambda_25.html.
    [102] 謝嘉民,賴一凡,林永昌,枋志堯,奈米通訊,第十二卷第二期,28。
    [103] Bruker公司SPM儀器說明書。
    [104] V.K . La Mer, R.H. Dinegar, J. Am. Chem. Soc., 1950, 72, 4847.
    [105] T. L. Li and H. Teng, J. Mater. Chem., 2010, 20, 3656.
    [106] X. S. Du, Z. Z. Yu, A. Dasari, J. Ma, Y. Z. Meng and Y. W. Mai, Chem. Mater., 2006, 18, 5156.
    [107] G. Zhu and Z. Xu, J. Am. Chem. Soc., 2011,133, 148.
    [108] X. Chen, H. Xu, N. Xu, F. Zhao, W. Lin, G. Lin, Y. Fu, Z. Huang, H. Wang and M. Wu, Inorg. Chem. 2003, 42, 3100.
    [109] Y. P. Du, B. Xu, T. Fu, M. Cai, F. Li and Y. Zhang, J. Am. Chem. Soc., 2010, 132, 1470.
    [110] S. Shen, Y. Zhang, L. Peng, Y. Du and Q. Wang, Angew. Chem. Int. Ed., 2011, 50, 7115.
    [111] M. E. Norako, M. A. Franzman and R. L. Brutchey, Chem. Mater., 2009, 21, 4299.
    [112] C. B. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc., 1993, 115, 8706.
    [113] L. Li, T. J. Daou, I. Texier, T. T. Kim Chi, N. Q. Liem and P. Reiss, Chem. Mater., 2009, 21, 2422.
    [114] N. Pradhan and D. D. Sarma, J. Phys. Chem. Lett., 2011, 2, 2818.
    [115] M. Han, X. Gao, J. Z. Su and S. Nie, Nat. Biotechnol., 2001, 19, 631.
    [116] G. P. Mitchell, C. A. Mirkin and R. L. Letsinger, J. Am. Chem. Soc., 1999, 121, 8122.
    [117] S. Pathak, S. K. Choi, N. Arnheim and M. E. Thompson, J. Am. Chem. Soc., 2001, 123, 4103.
    [118] M. B. Jr., M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, Science, 1998, 281, 2013.
    [119] J. K. Jaiswal, H. Mattoussi, J. M. Mauro and S. M. Simon, Nat. Biotechnol., 2003, 21, 47.
    [120] W. A. Bleyer, Cancer, 1978, 41, 36.
    [121] P. Seegopaul and G. A. Rechnitz, Anal. Chem., 1984, 56, 852.
    [122] A. Williams, and I. A. Ibrahim, J. Am. Chem. Soc., 1981, 103, 7090.
    [123] J. V. Staros , Biochemistry, 1982, 21, 3950.
    [124] J. B. Denney and G. Blobel, Proc. Natl. Acad. Sci.,1984, 81, 5286.
    [125] N. J. Kotite, J.V.Staros and L.W. Cunningham, Biochemistry, 1984, 23, 3099.
    [126] A. H. Beth, T. E. Conturo, S. D.Venkataramu and J. V. Staros, Biochemistry, 1986, 25, 3824.
    [127] J. A. Donovan, and M. L. Jennings, Biochemistry, 1986, 25, 1538.
    [128] M. L. Jennings and J. S. Nicknish, J. Biol. Chem., 1985, 260, 5472.
    [129] F. R. Ludwig and F. A. Jay, J. Biochem., 1985, 151, 83.
    [130] P. S. R. Anjaneyulu and J. V. Staros, Int.J. Pept. Protein Res., 1987, 30, 117.
    [131] G. T. Hermanson, Bioconjugate Techniques 2nd Edition, 2008.
    [132] J. V. Staros, R. W. Wright and D. M. Swinghe, Anal. Biochem.,1986, 156, 220.
    [133] M. A. Gilles, A. Q. Hudson and C. L. Borders Jr, Anal. Biochem., 1990, 184, 244.
    [134] M. Poe, J. Biol. Chem., 1977, 252, 3724.

    無法下載圖示 全文公開日期 2018/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE