簡易檢索 / 詳目顯示

研究生: 張智凱
Chih-Kai Chang
論文名稱: 擬真人體脊椎側彎模型於脊椎矯正治療手術之生物力學研究
Biomechanical Investigation of Correction Strategies in Scoliosis Treatment Using a Realistic Human Musculoskeletal Scoliosis Model
指導教授: 徐慶琪
Ching-Chi Hsu
口試委員: 趙振綱
Ching-Kong Chao
張定國
Ting-Kuo Chang
徐慶琪
Ching-Chi Hsu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 78
中文關鍵詞: 脊椎側彎手術治療有限元素分析矯正策略
外文關鍵詞: Scoliosis, Surgical treatment, Finite element analysis, Correction strategies
相關次數: 點閱:261下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 青少年特發性脊椎側彎(AIS)是最常見的一種脊椎側彎型式,通常好發於10歲以上之青少年身上,在脊椎側彎角度(Cobb angle)大於40°之患者通常會採用手術矯正治療的方式。利用有限元素法來評估脊椎側彎進行手術治療的研究已有些成果,不過在過去的文獻中,部分的數值模型具有過度簡化或邊界條件不足之問題。此外,脊椎側彎手術治療的生物力學機制及整體治療策略還不明確,因此,本研究的目的是建構一個完整且擬真的人體脊椎側彎實體模型,運用數值分析的方式來分析手術矯正治療。
    本研究利用SolidWorks及ANSYS Workbench建立了完整的脊椎側彎有限元素模型,利用此模型來了解對於不同的手術治療策略的效果,主要分成7大群組,包含:16節段矯正、13節段矯正、11節段矯正、9節段矯正、7節段矯正、5節段矯正、3節段矯正,在大群組裡面會再進行細分,才能夠針對相同的矯正節段長度不同矯正範圍的情況下進行比較。邊界及負載條件包含骨盆球窩處給予完全拘束,頸椎第一節允許上下位移、左右側彎。此外,在數值分析中給予位移,並使用脊椎側彎角度、肩傾斜角、椎間盤應力,脊椎曲度及矯正誤差等科學數據進行結果與討論。
    在結果中發現,9節段以上的長節段治療能夠獲得較佳的脊椎側彎角度。在9節段的矯正治療中,螺絲植入位置在T4-T12節段會比其他組別有更低的脊椎側彎角度。這種矯正策略也降低了椎間盤的應力及矯正誤差,但肩傾斜角的角度會增加。由於短節段的治療效果不佳,並未提出探討,如5節段或3節段矯正。
    利用擬真的人體脊椎側彎模型來評估不同的矯正策略。在9節段矯正中,螺絲植入位置在T4-T12處有最佳的生物力學特性。本研究可以幫助外科醫師了解利用不同的矯正策略來進行脊椎側彎的手術治療。


    Adolescent idiopathic scoliosis (AIS) is the most common form of scoliosis. It usually occurs in adolescents over the age of 10, and patients with a Cobb angle greater than 40° are usually treated with surgical correction. Computational simulations have been applied to investigate the biomechanics of correction strategy in scoliosis treatment. However, some numerical studies have problems with model oversimplification or inappropriate boundary and loading conditions. Additionally, the biomechanical mechanism and overall treatment strategies for scoliosis treatment have not yet been clarified. Thus, the purpose of this study was to evaluate various treatment strategies for scoliosis using a realistic human musculoskeletal scoliosis model.
    Three-dimensional finite element models of scoliosis treated with various treatment strategies were developed using SolidWorks and ANSYS Workbench. Different correction ranges were investigated and divided into seven major groups including 16-segment correction, 13-segment correction, 11-segment correction, 9-segment correction, 7-segment correction, 5-segment correction, and 3-segment correction. Different position of pedicle screws was also investigated in each major group. In the loading and boundary conditions, the right and left acetabulum of the pelvis was fully constrained, and the superior-inferior movement and right/left lateral movement were allowed in the C1 vertebra. Additionally, the correction displacements were applied to simulate the scoliosis correction procedure. In post-processing, the Cobb angle, shoulder angle, disc stress, and correction error were calculated.
    The results showed that the acceptable Cobb angle could be obtained if the correction range was greater than nine segments. The 9-segment correction with the correction position of T4-T12 has better Cobb angle compared to the other correction positions. This correction strategy also reduced the disc stress and correction error, but the shoulder angle increased. The short segment correction, such as 5-segment correction or 3-segment correction, was not suggested due to ineffective treatment.
    Various correction strategies in the scoliosis treatment could be evaluated using a realistic human musculoskeletal scoliosis model. The 9-segment correction with the correction position of T4-T12 had the acceptable biomechanical performances. This study could help surgeons to understand the biomechanics of correction strategies in scoliosis treatment.

    第一章 緒論 1 1.1 研究背景、動機與目的 1 1.2 文獻回顧 7 1.3 本文架構 16 第二章 材料與方法 17 2.1 研究流程 17 2.2 實體模型建立 18 2.2.1 完整骨骼實體模型建立 18 2.2.2 脊椎側彎之完整骨骼實體模型建立 20 2.2.3 脊椎側彎之軀體實體模型建立 25 2.2.4 脊椎側彎之手術治療實體模型建立 27 2.3 有限元素分析 28 2.3.1 脊椎側彎有限元素分析模型建立 29 2.3.2 介面接觸設定 31 2.3.3 材料性質設定 31 2.3.4 網格設定 32 2.3.5 邊界與負載條件設定 33 2.3.6 組別優化分析 36 2.3.7 後處理 40 第三章 結果 42 3.1 有限元素分析結果 42 3.1.1 16節段矯正結果 42 3.1.2 13節段矯正結果 45 3.1.3 11節段矯正結果 48 3.1.4 9節段矯正結果 52 3.1.5 7節段矯正結果 56 3.1.6 5節段矯正結果 60 3.1.7 3節段矯正結果 62 第四章 討論 65 4.1 有限元素分析模型建構討論 65 4.1.1 脊椎側彎角度結果討論 65 4.1.2 肩傾斜角結果討論 67 4.1.3 椎間盤應力結果討論 68 4.1.4 脊椎曲度結果討論 69 4.1.5 矯正誤差結果討論 70 4.2 研究限制 71 第五章 結論與未來展望 72 5.1 結論 72 5.2 未來展望 73 參考文獻 74

    [1] 羅盛品(民 105)。人體脊椎側彎數值分析模型建立與其背架治療策略評估(未出版之碩士論文)。國立臺灣科技大學,臺北市。
    [2] Abe, Y., Ito, M., Abumi, K., Sudo, H., Salmingo, R., & Tadano, S. (2015). Scoliosis corrective force estimation from the implanted rod deformation using 3D-FEM analysis. Scoliosis, 10(2), S2.
    [3] Altaf, F., Gibson, A., Dannawi, Z., & Noordeen, H. (2013). Adolescent idiopathic scoliosis. BMJ, 346, 1-7.
    [4] Asher, M. A., & Burton, D. C. (2006). Adolescent idiopathic scoliosis: natural history and long term treatment effects. Scoliosis, 1(1), 2.
    [5] Assi, K. C., Grenier, S., Parent, S., Labelle, H., & Cheriet, F. (2015). A physically based trunk soft tissue modeling for scoliosis surgery planning systems. Computerized Medical Imaging and Graphics, 40, 217-228.
    [6] Awoukeng Goumtcha, A., Bodo, M., Taddei, L., & Roth, S. (2016). From military to civil loadings: Preliminary numerical‐based thorax injury criteria investigations. International journal for numerical methods in biomedical engineering, 32, 3.
    [7] Balagué, F., & Pellisé, F. (2016). Adolescent idiopathic scoliosis and back pain. Scoliosis and spinal disorders, 11(1), 27.
    [8] Carlson, B. B., Burton, D. C., & Asher, M. A. (2013). Comparison of trunk and spine deformity in adolescent idiopathic scoliosis. Scoliosis, 8, 2.
    [9] Cheng, F. H., Shih, S. L., Chou, W. K., Liu, C. L., Sung, W. H., & Chen, C. S. (2010). Finite element analysis of the scoliotic spine under different loading conditions. Bio-medical materials and engineering, 20(5), 251-259.
    [10] Cho, K. J., Suk, S. I., Park, S. R., Kim, J. H., & Jung, J. H. (2013). Selection of proximal fusion level for adult degenerative lumbar scoliosis. European Spine Journal, 22(2), 394-401.
    [11] Cobetto, N., Parent, S., & Aubin, C. E. (2018). 3D correction over 2 years with anterior vertebral body growth modulation: A finite element analysis of screw positioning, cable tensioning and postoperative functional activities. Clinical Biomechanics, 51, 26-33.
    [12] Czeizel, A., Bellyei, A., Barta, O., Magda, T., & Molnar, L. (1978). Genetics of adolescent idiopathic scoliosis. Journal of medical genetics, 15(6), 424-427.
    [13] Dobbs, M. B., Lenke, L. G., Kim, Y. J., Kamath, G., Peelle, M. W., & Bridwell, K. H. (2006). Selective posterior thoracic fusions for adolescent idiopathic scoliosis: comparison of hooks versus pedicle screws. Spine, 31(20), 2400-2404.
    [14] Driscoll, M., Mac-Thiong, J. M., Labelle, H., Stad, S., Serhan, H., & Parent, S. (2015). Biomechanical comparison of 2 different pedicle screw systems during the surgical correction of adult spinal deformities. Spine deformity, 3(2), 114-121.
    [15] Du, H. G., Liao, S. H., Jiang, Z., Huang, H. M., Ning, X. T., Jiang, N. Y., ... & Wei, H. (2016). Biomechanical analysis of press-extension technique on degenerative lumbar with disc herniation and staggered facet joint. Saudi Pharmaceutical Journal, 24(3), 305-311.
    [16] Dumas, R., Lafage, V., Lafon, Y., Steib, J. P., Mitton, D., & Skalli, W. (2005). Finite element simulation of spinal deformities correction by in situ contouring technique. Computer methods in biomechanics and biomedical engineering, 8(5), 331-337.
    [17] Edwards, C. C., Lenke, L. G., Peelle, M., Sides, B., Rinella, A., & Bridwell, K. H. (2004). Selective thoracic fusion for adolescent idiopathic scoliosis with C modifier lumbar curves: 2-to 16-year radiographic and clinical results. Spine, 29(5), 536-546.
    [18] Fagan, M. J., Julian, S., & Mohsen, A. M. (2002). Finite element analysis in spine research. Proceedings of the institution of mechanical engineers, part h: journal of engineering in medicine, 216(5), 281-298.
    [19] Giudici, F., Galbusera, F., Zagra, A., Wilke, H. J., Archetti, M., & Scaramuzzo, L. (2017). Determinants of the biomechanical and radiological outcome of surgical correction of adolescent idiopathic scoliosis surgery: the role of rod properties and patient characteristics. European Spine Journal, 26(4), 524-532.
    [20] Hacquebord, J. H., & Leopold, S. S. (2012). In brief: the Risser classification:a classic tool for the clinician treating adolescent idiopathic scoliosis.
    [21] Henao, J., Labelle, H., Arnoux, P. J., & Aubin, C. É. (2018). Biomechanical Simulation of Stresses and Strains Exerted on the Spinal Cord and Nerves During Scoliosis Correction Maneuvers. Spine deformity, 6(1), 12-19.
    [22] Konieczny, M. R., Senyurt, H., & Krauspe, R. (2013). Epidemiology of adolescent idiopathic scoliosis. Journal of children's orthopaedics, 7(1), 3-9.

    [23] Kuklo, T. R., Lenke, L. G., Graham, E. J., Won, D. S., Sweet, F. A., Blanke, K. M., & Bridwell, K. H. (2002). Correlation of radiographic, clinical, and patient assessment of shoulder balance following fusion versus nonfusion of the proximal thoracic curve in adolescent idiopathic scoliosis. Spine, 27(18), 2013-2020.
    [24] Lalonde, N. M., Villemure, I., Pannetier, R., Parent, S., & Aubin, C. É. (2010). Biomechanical modeling of the lateral decubitus posture during corrective scoliosis surgery. Clinical biomechanics, 25(6), 510-516.
    [25] Lenke, L. G., Betz, R. R., Haher, T. R., Lapp, M. A., Merola, A. A., Harms, J., & Shufflebarger, H. L. (2001). Multisurgeon assessment of surgical decision-making in adolescent idiopathic scoliosis: curve classification, operative approach, and fusion levels. Spine, 26(21), 2347-2353.
    [26] Lenke, L. G., Edwards, C. C., & Bridwell, K. H. (2003). The Lenke classification of adolescent idiopathic scoliosis: how it organizes curve patterns as a template to perform selective fusions of the spine. Spine, 28(20S), S199-S207.
    [27] Negrini, S., Aulisa, A. G., Aulisa, L., Circo, A. B., de Mauroy, J. C., Durmala, J., ... & Minozzi, S. (2012). 2011 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis, 7(1), 3.
    [28] Pasha, S., Aubin, C. E., Labelle, H., Parent, S., & Mac-Thiong, J. M. (2015). The biomechanical effects of spinal fusion on the sacral loading in adolescent idiopathic scoliosis. Clinical Biomechanics, 30(9), 981-987.
    [29] Skalli, W., & Vergari, C. (2018). Biomechanics of Adolescent Idiopathic Scoliosis. In Pathogenesis of Idiopathic Scoliosis. Springer, Tokyo, 75-97.
    [30] Smith, J. S., Shaffrey, C. I., Kuntz IV, C., & Mummaneni, P. V. (2008). Classification systems for adolescent and adult scoliosis. Neurosurgery, 63(suppl_3), A16-A24.
    [31] Stokes, I. A., & Laible, J. P. (1990). Three-dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by asymmetric growth. Journal of biomechanics, 23(6), 589-595.
    [32] Wang, W., Baran, G. R., Betz, R. R., Samdani, A. F., Pahys, J. M., & Cahill, P. J. (2014). The use of finite element models to assist understanding and treatment for scoliosis: a review paper. Spine Deformity, 2(1), 10-27.
    [33] Weiss, H. R. (2010). " Brace technology" thematic series-the Gensingen brace™ in the treatment of scoliosis. Scoliosis, 5(1), 22.

    [34] Wynarsky, G. T., & Schultz, A. B. (1991). Optimization of skeletal configuration: studies of scoliosis correction biomechanics. Journal of biomechanics, 24(8), 721-732.
    [35] Xu, M., Yang, J., Lieberman, I. H., & Haddas, R. (2016, June). Comparison of intersegmental rotations, intradiscal pressures, and facet joint forces between healthy and scoliosis subjects: a finite element pilot study. In The 4th International Digital Human Modeling Symposium (DHM 2016).

    無法下載圖示 全文公開日期 2024/04/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE